Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,A=x3+11x2+30x
A=x2(x+5)+6x2+30x
A=x2(x+5)+6x(x+5)
A=(x2+6x)(x+5)=x(x+5)(x+6)
e,( x+1)(x+3)(x+5)(x+7)+15
=(x2+8x+7)(x2+8x+15)+15
=(x2+8x+11-4)(x2+8x+11+4)+15
=(x2+8x+11)-1=(x2+8x+10)(x2+8x+12)
1)x2-8x-9
= x^2 - 9x +x -9
= x(x+1) - 9 (x+1)
= (x-9) (x+1)
2)x2+3x-18
3)x3-5x2+4x
=x^3 - 4x^2 - x^2 + 4x
= x^2 (x-1) - 4x(x-1)
= (x^2 - 4x) (x-1)
= x(x-4)(x-1)
4)x3-11x2+30x
5)x3-7x-6
6)x16-64
\(=\left(x^8\right)^2-8^2\)
\(=\left(x^8-8\right)\left(x^8+8\right)\)
7)x3-5x2+8x-4
8)x2-3x+2
= x^2 - 2x - x +2
= x(x-1) -2(x-1)
= (x-2)(x-1)
1) \(\left(x-9\right)\left(x+1\right)\) 2) \(\left(x-3\right)\left(x+6\right)\) 3) \(x\left(x-4\right)\left(x-1\right)\)
4) \(x\left(x-6\right)\left(x-5\right)\) 5)\(\left(x-3\right)\left(x+1\right)\left(x+2\right)\) 6) ........
7) \(\left(x-1\right)\left(x-2\right)\left(x-2\right)\) 8) \(\left(x-2\right)\left(x-1\right)\)
a,\(xy+3x-7y-21\)
\(=x\left(y+3\right)-7\left(y+3\right)\)
\(=\left(y+3\right)\left(x-7\right)\)
\(b,2xy-15-6x+5y\)
\(=\left(2xy-6x\right)+\left(-15+5y\right)\)
\(=2x\left(y-3\right)-5\left(3-y\right)\)
\(=2x\left(y-3\right)+5\left(y-3\right)\)
\(=\left(y-3\right)\left(2x+5\right)\)
\(2x^2+3x-27=2x^2-6x+9x-27=2x\left(x-3\right)+9\left(x-3\right)=\left(2x+9\right)\left(x-3\right)\)
\(x^3-7x+6=x^3-x-6x+6=x\left(x^2-1\right)-6\left(x-1\right)=x\left(x-1\right)\left(x+1\right)-6\left(x-1\right)=\left(x-1\right)\left(x^2+x-6\right)\)
\(x^3+5x^2+8x+4=x^3+x^2+4x^2+8x+4=x^2\left(x+1\right)+4\left(x^2+2x+1\right)=x^2\left(x+1\right)+4\left(x+1\right)^2\)
\(=\left(x+1\right)\left(x^2+4x+4\right)=\left(x+1\right)\left(x+2\right)^2\)
\(27x^3-27x^2+18x-4=27x^3-9x^2-18x^2+6x+12x-4\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)=\left(3x-1\right)\left(9x^2-6x+4\right)\)
a) Đặt A=(x+2)(x+3)(x+4)(x+5)-24
= (x+2)(x+5)(x+3)(x+4)-24
= (x^2+7x+10)(x^2+7x+12)-24
Đặt x^2+7x+11 = a thay vào A ta được :
A=(a-1)(a+1)=a^2-25 = a^2 - 5^2 = (a-5)(a+5) ( 2)
Thế a vào (2) ta được :
A=(x^2+7x+11-5)(x^2+7x+11+5)
= (x^2+7x+6)(x^2+7x+16)
b) = (x2+8x+7)(x2+8x+15)+15
Đặt X=x2+8x+11
f(x) = (X-4)(X+4)+15
= X2-16+15
= X2-12
= (X-1)(X+1)
=> f(x)= (x2+8x+11-1)(x2+8x+11+1)
f(x) = (x2+8x+10)(x2+8x+12)
Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:
f(x) = (x2+8x+10)(x2+8x+12)
= (x2+8x+10)[(x2+2x)+(6x+12)]
= (x2+8x+10)[x(x+2)+6(x+2)]
= (x+2)(x+6)(x2+8x+10)
d) 2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4)
Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có một nhân tử là x+1 nên 2x3 + x2 - 5x - 4 = (x+1)(2x2-x-4)
Vậy 2x4 - 3x3 - 7x2 + 6x + 8 = (x-2)(x+1)(2x2-x-4)
a) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left[\left(x-1\right)\left(x+2\right)\right].\left[x\left(x+1\right)\right]=24\)
\(=\left(x^2+2x-x-2\right)\left(x^2+x\right)=24\)
\(=\left(x^2+x-2\right)\left(x^2+x\right)=24\)
\(=\left[\left(x^2+x-1\right)-1\right].\left[\left(x^2+x-1\right)+1\right]=24\)
\(=\left(x^2+x-1\right)^2-1=24\)
\(=\left(x^2+x-1\right)^2=25\)
xin lỗi mk chỉ làm được đến đây thôi cậu làm tiếp nhé
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
1 ) x3 - 2x2 + x
= x( x2 - 2x + 1 )
= x ( x-1)2
2) 4x3 - 25x
= x ( 4x2 - 25)
= x( 2x-5) ( 2x +5)
11) \(x^2-y^2-4x+4\)
\(=\left(x^2-4x+4\right)-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-y-2\right)\left(x+y-2\right)\)
13) \(x^4+4=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)