K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2023

\(4x\left(x-5\right)^2-12\left(4-x\right)^2\)

\(=4\left[x\left(x-5\right)^2-3\left(4-x\right)^2\right]\)

\(=4\left[x\left(x^2-10x+25\right)-3\left(16-8x+x^2\right)\right]\)

\(=4\left(x^3-10x^2+25x-48+24x-3x^2\right)\)

\(=4\left(x^3-13x^2+49x-48\right)\)

#Ayumu

5 tháng 7 2019

#)Giải :

\(x^3-2x-4\)

\(=x^3+2x^2-2x^2+2x-4x-4\)

\(=x^3+2x^2+2x-2x^2-4x-4\)

\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

\(x^4+2x^3+5x^2+4x-12\)

\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)

\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)

5 tháng 7 2019

Câu 1.

Đoán được nghiệm là 2.Ta giải như sau:

\(x^3-2x-4\)

\(=x^3-2x^2+2x^2-4x+2x-4\)

\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

14 tháng 10 2020

( x - y )2 + 4x - 4y - 12 < xin phép sửa đề >

= ( x - y )2 + 4( x - y ) - 12

Đặt t = x - y

bthuc <=> t2 + 4t - 12

            = t2 - 2t + 6t - 12

            = t( t - 2 ) + 6( t - 2 )

            = ( t - 2 )( t + 6 )

            = ( x - y - 2 )( x - y + 6 )

21 tháng 6 2016

Đây là một dạng phân tích thừa số nguyên tố khá quen, cô sẽ hướng dẫn e nhé :) Ta cần ghép các hạng tử để xuất hiện các thành phần chứa biến giống nhau.

\(A=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=\left(4x+1\right)\left(3x+2\right)\left(12x-1\right)\left(x+1\right)-4\)

\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)

Đặt \(12x^2+11x+2=t\Rightarrow A=t\left(t-3\right)-4=t^2-3t-4=\left(t-4\right)\left(t+1\right)\)

Quay lại biến x ta có: \(A=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)

Câu sau tương tự nhé :)

31 tháng 7 2018

mk ghi kết quả thôi nhé, nếu từ kết quả mak k biết biến đổi thì ib cho mk

\(x^5-7x^4-x^3+43x^2-36=\left(x-6\right)\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)\)

câu thứ 2 bạn ktra lại đề

\(x^4+2x^3-15x^2-18x+64=\left(x-2\right)\left(x^3+4x^2-7x-32\right)\)

\(x^3-x^2-4=\left(x-2\right)\left(x^2+x+2\right)\)

\(x^3-3x^2-4x+12=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

1 tháng 8 2018

a)  \(x^5-7x^4-x^3+43x^2-36\)

\(=x^3\left(x^2-1\right)-7x^2\left(x^2-1\right)+36\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^3-7x^2+36\right)=\left(x-1\right)\left(x+1\right)\left(x^3+2x^2-9x^2-18x+18x+36\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x^9-9x+18\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)\left(x-6\right)\)

c)  \(x^4+2x^3-15x^2-18x+64\)

\(=x^3\left(x-2\right)+4x^2\left(x-2\right)-7x\left(x-2\right)-32\left(x-2\right)\)

\(=\left(x-2\right)\left(x^3+4x^2-7x-32\right)\)

21 tháng 6 2016

Ta nhận thấy sự giống nhau gữa các biểu thức trong và ngoài bình phương, từ đó nghĩ đến việc đặt ẩn phụ.

Đặt \(x^2+x=t\) , khi đó đa thức đã cho trở thành \(t^2+4t-12=\left(t-2\right)\left(t+6\right)\)

Quay trở lại biến x ta có: \(\left(x^2+x+6\right)\left(x^2+x-2\right)\)

5 tháng 9 2018

Đặt \(A=\left(x^2+x\right)^2+4x^2+4x-12\)        

         \(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)

Đặt \(x^2+x=t\)

Khi đó: \(A=t^2+4t-12\)

              \(=\left(t-2\right)\left(t+6\right)\)

              \(=\left(x^2+x-2\right)\left(x^2+x+6\right)\)

              \(=\left[x^2+2x-x-2\right].\left(x^2+x+6\right)\)

              \(=\left[x\left(x+2\right)-\left(x+2\right)\right].\left(x^2+x+5\right)\)

              \(=\left(x+2\right)\left(x-1\right)\left(x^2+x+5\right)\)

Mong bạn hiểu lời giải và chúc bạn học tốt.

12 tháng 12 2018

Pham Van Hung. Hình như bạn sai đó, xem kĩ lại dòng thức 2 và 3 từ dưới lên đi.

5 tháng 9 2018

\(\left(x^2+x\right)^2+4x^2+4x-12=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16=\left(x^2+x+2\right)^2-\left(4\right)^2=\left(x^2+x+6\right)\left(x^2+x-2\right)\)