Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x6+3x4y2-8x3y3+3x2y4+y6= x6+3x4y2+3x2y4+y6-8x3y3=(x2+y2)3-(2xy)3
= (x2+y2-2xy)[(x2+y2)2+2xy(x2+y2)+(2xy)2]= (x-y)2(x4+6x2y2+y4+2x3y+2xy3)
(x2+y2-5)2-4x2y2-16xy-16=(x2+y2-5)2-(4x2y2+16xy+16)=(x2+y2-5)2-(2xy+4)2
=(x2+y2-5+2xy+4)(x2+y2-5-2xy-4)=(x2+2xy+y2-1)(x2-2xy+y2-9)=[(x+y)2-1][(x-y)2-32]=(x+y-1)(x+y+1)(x-y-3)(x-y+3)
x4+324=x4+36x2+324-36x2=(x2+18)2-(6x)2=(x2+18-6x)(x2+18+6x)
b: \(=x\left(x^4-y^4\right)+y\left(x^4-y^4\right)\)
\(=\left(x+y\right)\left(x^4-y^4\right)\)
\(=\left(x+y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x^2+y^2\right)\left(x+y\right)^2\cdot\left(x-y\right)\)
1) x4y2 + x2y4 + x4y3 + x2y5 = (x4y2 + x2y4) + (x4y3 + x2y5) = x2y2.(x2 + y2) + x2y3.(x2 + y2) = x2y2.(x2+ y2) (1 + y) = [xy.(x2 + y2)].[xy(1+y)]
=> x4y2 + x2y4 + x4y3 + x2y5 chia cho xy.(x2 + y2) bằng xy.(1+ y)
2) A = (n2 - 8)2 + 36 = n4 - 16n2 + 100 = (n4 + 20n2 + 100) - 36n2 = (n2 + 10)2 - (6n)2 = (n2 - 6n+ 10).(n2 + 6n+ 10)
Vậy để A là số nguyên tố thì n2 - 6n + 10 = 1 hoặc n2 + 6n + 10 = 1
Mà n là số tự nhiên nên n2+ 6n + 10 > 1
=> n2 - 6n + 10 = 1 => n2 - 6n + 9 = 0 => (n -3)2 = 0 => n = 3
Vậy....
3) a) = xy(x - y) - xz(x + z) + yz.[(x+ z) + (x - y)] = xy(x - y) - xz(x + z) + yz.(x + z) + yz(x - y)
= [xy(x - y) + yz.(x - y)] + [(yz.(x+ z) - xz(x+z)] = y(x - y)(x+ z) + z(x + z).(y - x) = (x+ z)(x- y).(y - z)
b) = (x2 + x)2 - (2x)2 - 4(x+3) = (x2 + x + 2x).(x2 + x- 2x) - 4(x+3) = (x2 + 3x).(x2 - x) - 4(x+3)
= (x+3).[x.(x2 - x) - 4] = (x+3).(x3 - x2 - 4) = (x+3).(x3 - 8 + 4 - x2) = (x+3).[(x - 2)(x2 + 2x + 4) - (x - 2).(x+2)]
= (x + 3).(x - 2).(x2 + 2x + 4 - x- 2) = (x + 3).(x - 2).(x2 + x + 2)
4) a) n4 + 1/4 = (n4 + n2 + 1/4) - n2 = (n2 + 1/2)2 - n2 = (n2 - n + 1/2).(n2 + n + 1/2) = [n(n - 1) + 1/2].[n.(n+1) + 1/2]
Áp dụng công thức ta có:
A = \(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)...\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right).\left(4^4+\frac{1}{4}\right)...\left(20^4+\frac{1}{4}\right)}=\frac{\frac{1}{2}.\left(1.2+\frac{1}{2}\right).\left(2.3+\frac{1}{2}\right).\left(3.4+\frac{1}{2}\right)...\left(18.19+\frac{1}{2}\right).\left(19.20+\frac{1}{2}\right)}{\left(1.2+\frac{1}{2}\right).\left(2.3+\frac{1}{2}\right).\left(3.4+\frac{1}{2}\right).\left(4.5+\frac{1}{2}\right)...\left(19.20+\frac{1}{2}\right).\left(20.21+\frac{1}{2}\right)}\)
A = \(\frac{\frac{1}{2}}{20.21+\frac{1}{2}}=\frac{1}{841}\)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
b) x3y3 + x2y2+ 4 = x3y3- 4xy + (xy)2- 2xy.2 + 22 = xy [ (xy)^2 - 2^2 ] + ( xy - 2)^2
= xy(xy-2)(xy+2)+ (xy-2)^2
= (xy-2) [ xy(xy+2) + ( xy-2) ]
= (xy-2) [ (xy)2 + 2xy + xy - 3 ]
= ( xy - 3) [ (xy)2 + 3xy - 3]
3) (chưa bik làm)
4) x4 +x3 + 6x2 +5x +5
= x4 +x3 + x2 + 5x2 + 5x +5
= x2( x2+x+ 1 ) + 5( x2+x+ 1 )
= ( x2+ 5 ) ( x2+x+ 1 )
5) x4 - 2x3 - 12x2 +12x + 36
= x4 - 2x3 - 6x2 - 6x2 + 12x + 36=
x2 ( x2 - 2x - 6) - 6 ( x2 - 2x - 6)
= (x^2 - 6) ( x2 - 2x - 6) 6) x8y8 + x4y4 + 1 = \(\left[\left(xy\right)^4\right]^2+2x^4y^4+1-x^4y^4\)=\(\left[\left(xy\right)^4+1\right]^2-\left[\left(xy\right)^2\right]^2\)
= \(\left(x^4y^4+1-x^2y^2\right)\left(x^4y^4+1+x^2y^2\right)\)
( mik ko bik đúng hay sai đâu nha) mik thấy nó thành nhân tử thì mik tách thôi
2) \(x^4y+xy^4=xy\left(x^3+y^3\right)\)
4) \(x^4+x^2+1=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
tích mình với
ai tích mình
mình tích lại
thanks