K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

a) \(x^2-\sqrt{11}^2=\left(x-\sqrt{11}\right)\left(x+\sqrt{11}\right)\)

b) đềsai sai ấy ạ, đâu có dấu căn đâu ta? Nếu có dấu căn thì phải bỏ cái mũ 2 đi chứ??

25 tháng 7 2019

Đúng đề đó bạn

22 tháng 8 2015

2) a) \(x^2-3=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)

b) \(x^2-6=\left(x-\sqrt{6}\right).\left(x+\sqrt{6}\right)\)

c) = \(x^2+2x.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)^2\)

d) = \(x^2-2x\sqrt{5}+\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)^2\)

21 tháng 7 2016

a) Đặt \(x^2+3x+1=y\)

=> y(y+1) - 6 = 0

=> \(y^2+y-6=0\)

=> \(\left[\begin{array}{nghiempt}y=2\\y=-3\end{array}\right.\)

Với y = 2 ta có:

\(x^2+3x+1=2\)

=> \(\left[\begin{array}{nghiempt}x=\frac{-3+\sqrt{13}}{2}\\x=\frac{-3-\sqrt{13}}{2}\end{array}\right.\)

Với y = -3 ta có:

\(x^2+3x+1=-3\)

=>\(\left[\begin{array}{nghiempt}x=1\\x=-4\end{array}\right.\)

Có j không hiểu có thể hỏi lại mk

Chúc bạn làm bài tốt 

21 tháng 7 2016

b) \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-2}\right)^2=1^2\)

\(\Leftrightarrow x+3+x-2-2\sqrt{\left(x+3\right)\cdot\left(x-2\right)}=1\)

\(\Leftrightarrow2x+1-1=2\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow2x=2\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow x=\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow x^2=\left(\sqrt{\left(x+3\right)\left(x-2\right)}\right)^2\)

\(\Leftrightarrow x^2=x^2+x-6\)

\(\Leftrightarrow x-6=0\)

\(\Leftrightarrow x=6\)

NV
6 tháng 8 2020

7/

ĐKXĐ: \(-3\le x\le\frac{2}{3}\)

\(\Leftrightarrow2x+8\sqrt{x+3}+4\sqrt{3-2x}=2\)

\(\Leftrightarrow8\sqrt{x+3}+4\sqrt{3-2x}-\left(3-2x\right)+1=0\)

\(\Leftrightarrow8\sqrt{x+3}+\sqrt{3-2x}\left(4-\sqrt{3-2x}\right)+1=0\)

Do \(x\ge-3\Rightarrow3-2x\le9\Rightarrow\sqrt{3-2x}\le3\)

\(\Rightarrow4-\sqrt{3-2x}>0\)

\(\Rightarrow VT>0\)

Phương trình vô nghiệm (bạn coi lại đề)

NV
6 tháng 8 2020

5/

\(\Leftrightarrow8x^2-3x+6-4x\sqrt{3x^2+x+2}=0\)

\(\Leftrightarrow\left(4x^2-4x\sqrt{3x^2+x+2}+3x^2+x+2\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{3x^2+x+2}\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-\sqrt{3x^2+x+2}=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow x=2\)

6/

ĐKXĐ: ....

\(\Leftrightarrow\left(x-2000-2\sqrt{x-2000}+1\right)+\left(y-2001-2\sqrt{y-2001}+1\right)+\left(z-2002-2\sqrt{z-2002}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2000}-1\right)^2+\left(\sqrt{y-2001}-1\right)^2+\left(\sqrt{z-2002}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2000}-1=0\\\sqrt{y-2001}-1=0\\\sqrt{z-2002}-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2001\\y=2002\\z=2003\end{matrix}\right.\)

NV
9 tháng 8 2020

6.

Đặt \(\left\{{}\begin{matrix}\sqrt{5x^2+6x+5}=a\\4x=b\end{matrix}\right.\)

\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\)

\(\Leftrightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{5x^2+6x+5}=4x\left(x\ge0\right)\)

\(\Leftrightarrow5x^2+6x+5=16x^2\)

\(\Leftrightarrow11x^2-6x-5=0\)

\(\Rightarrow x=1\)

NV
9 tháng 8 2020

4. Bạn coi lại đề (chính xác là pt này ko có nghiệm thực)

5.

\(\Leftrightarrow x^2+x+6-\left(2x+1\right)\sqrt{x^2+x+6}+6x-6=0\)

Đặt \(\sqrt{x^2+x+6}=t>0\)

\(t^2-\left(2x+1\right)t+6x-6=0\)

\(\Delta=\left(2x+1\right)^2-4\left(6x-6\right)=\left(2x-5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\frac{2x+1+2x-5}{2}=2x-2\\t=\frac{2x+1-2x+5}{2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+6}=2x-2\left(x\ge1\right)\\\sqrt{x^2+x+6}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=4x^2-8x+4\left(x\ge1\right)\\x^2+x+6=9\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

1. ĐKXĐ: $\xgeq \frac{-6}{5}$

PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)

\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)

\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)

Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$

Do đó: $x^2-x-2=0$

$\Leftrightarrow (x+1)(x-2)=0$

$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)

 

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Bài 2: Tham khảo tại đây:

Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24

31 tháng 12 2022

c: =>3x^2+3y^2=39 và 3x^2-2y^2=-6

=>5y^2=45 và x^2=13-y^2

=>y^2=9 và x^2=4

=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)

d: \(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{x}=5\\\sqrt{x}-\sqrt{y}=-\dfrac{11}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y}=1+\dfrac{11}{2}=\dfrac{13}{2}\end{matrix}\right.\)

=>x=1 và y=169/4

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4-3=1\\-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9-2=7\end{matrix}\right.\)

=>x+1=11/9 và y+4=-11/19

=>x=2/9 và y=-87/19

12 tháng 9 2017

mọi người giúp mình với ạ,mai mình phải nộp rồi nhưng kô biết làm .Mong mn giúp đỡ!!!

5 tháng 10 2017

Bài dễ mà :
a, \(\sqrt{x+5}=x+15 \)
\(x+5=x^2+30x+225\)
\(x^2+29x+220=0\)
\(\left(x+14,5\right)^2+9,75=0\)
pt vô nghiệm

4 tháng 7 2018

\(x=\dfrac{\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}.\left(\sqrt{5}+2\right)=\dfrac{\sqrt[3]{5\sqrt{5}-3.5.2+3\sqrt{5}.4-8}}{\sqrt{5}+\sqrt{9-2.3\sqrt{5}+5}}.\left(\sqrt{5}+2\right)=\dfrac{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}{3}=\dfrac{5-4}{3}=\dfrac{1}{3}\) Thay : \(x=\dfrac{1}{3}\) vào A , ta được :

\(A=\left(\dfrac{3}{27}+\dfrac{8}{9}-\dfrac{3}{3}+1\right)^{2012}=1^{2012}=1\)

Vậy ,...