K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2016

QUÁ dễ

10 tháng 10 2016

\(x^2\left(1-x^2\right)-4-4x^2\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(-\left(x^2-x+2\right)\right)\left(x^2+x+2\right)\)

19 tháng 10 2015

1) x4y2 + x2y4 + x4y+ x2y = (x4y2 + x2y4) + (x4y+ x2y5) = x2y2.(x+ y2) + x2y3.(x+ y2) = x2y2.(x2+ y2) (1 + y) = [xy.(x2 + y2)].[xy(1+y)]

=> x4y2 + x2y4 + x4y+ x2y5 chia cho xy.(x2 + y2)  bằng xy.(1+ y)

2) A = (n2 - 8)+ 36 = n4 - 16n2 + 100  = (n+ 20n2 + 100) - 36n= (n+ 10)- (6n)= (n2 - 6n+ 10).(n+ 6n+ 10)

Vậy để A là số nguyên tố thì n- 6n + 10 = 1 hoặc n+ 6n + 10 = 1

Mà n là số tự nhiên nên n2+ 6n + 10 > 1 

=>  n- 6n + 10 = 1  => n- 6n + 9 = 0 => (n -3)= 0 => n = 3 

Vậy....

3) a) = xy(x - y) - xz(x + z) + yz.[(x+ z) + (x - y)] = xy(x - y) - xz(x + z) + yz.(x + z) + yz(x - y)

= [xy(x - y) + yz.(x - y)] + [(yz.(x+ z) - xz(x+z)] = y(x - y)(x+ z) + z(x + z).(y - x) = (x+ z)(x- y).(y - z)

b) = (x+ x)- (2x)- 4(x+3) = (x+ x + 2x).(x+ x- 2x) - 4(x+3) = (x+ 3x).(x- x) - 4(x+3)

= (x+3).[x.(x2 - x) - 4] = (x+3).(x- x2 - 4) = (x+3).(x3 - 8 + 4 - x2) = (x+3).[(x - 2)(x2 + 2x + 4) - (x - 2).(x+2)]

= (x + 3).(x - 2).(x+ 2x + 4 - x- 2) = (x + 3).(x - 2).(x+ x + 2) 

4) a) n+ 1/4 = (n+ n+ 1/4) - n= (n+ 1/2)2 - n= (n2 - n + 1/2).(n+ n + 1/2) = [n(n - 1) + 1/2].[n.(n+1) + 1/2]

Áp dụng công thức ta có:

A = \(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)...\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right).\left(4^4+\frac{1}{4}\right)...\left(20^4+\frac{1}{4}\right)}=\frac{\frac{1}{2}.\left(1.2+\frac{1}{2}\right).\left(2.3+\frac{1}{2}\right).\left(3.4+\frac{1}{2}\right)...\left(18.19+\frac{1}{2}\right).\left(19.20+\frac{1}{2}\right)}{\left(1.2+\frac{1}{2}\right).\left(2.3+\frac{1}{2}\right).\left(3.4+\frac{1}{2}\right).\left(4.5+\frac{1}{2}\right)...\left(19.20+\frac{1}{2}\right).\left(20.21+\frac{1}{2}\right)}\)

A = \(\frac{\frac{1}{2}}{20.21+\frac{1}{2}}=\frac{1}{841}\)

 

17 tháng 7 2017

a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right).\left(x+2y\right)-2.\left(x+2y\right)\)

\(=\left(x+2y\right).\left(x-2y-2\right)\)

b)  \(x^4+2x^3-4x-4=\left(x^4-4\right)+\left(2x^3-4x\right)=\left(x^2+2\right).\left(x^2-2\right)+2x.\left(x^2-2\right)\)

\(=\left(x^2-2\right).\left(x^2+2+2x\right)\)

c)  \(x^2.\left(1-x\right)^2-4x-4x^2=x^2.\left(x^2-2x+1\right)-4x-4x^2=x^4-2x^3+x^2-4x-4x^2\)

\(x^4-2x^3-3x^2-4x=x.\left(x^3-2x^2-3x-4\right)\)

d)  \(\left(1+2x\right).\left(1-2x\right)-x.\left(x+2\right).\left(x-2\right)=1-4x^2-x.\left(x^2-4\right)\)

\(=1-4x^2-x^3+4x=1-x^3+4x-4x^2=\left(1-x\right).\left(1+x+x^2\right)+4x.\left(1-x\right)\)

\(=\left(1-x\right).\left(1+x+x^2+4x\right)=\left(1-x\right).\left(x^2+5x+1\right)\)

e)  \(x^2+y^2-x^2y^2+xy-x-y=\left(x^2-x\right)-\left(x^2y^2-y^2\right)+\left(xy-y\right)\)

\(=x.\left(x-1\right)-y^2.\left(x^2-1\right)+y.\left(x-1\right)=x.\left(x-1\right)-y^2.\left(x-1\right)\left(x+1\right)+y.\left(x-1\right)\)

\(=\left(x-1\right).\left(x-y^2.\left(x+1\right)+y\right)=\left(x-1\right).\left(x-xy^2-y^2+y\right)\)

\(=\left(x-1\right)\left[-\left(xy^2-x\right)-\left(y^2-y\right)\right]=\left(x-1\right)\left[-x\left(y^2-1\right)-y\left(y-1\right)\right]\)

\(=\left(x-1\right)\left[-x\left(y-1\right)\left(y+1\right)-y\left(y-1\right)\right]=\left(x-1\right)\left(y-1\right)\left(-x.\left(y+1\right)-y\right)\)

\(=\left(x-1\right)\left(y-1\right)\left(-xy-x-y\right)=-\left(x-1\right)\left(y-1\right)\left(xy+x+y\right)\)

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

12 tháng 9 2020

Áp dụng HĐT a2 - b2 = ( a - b )( a + b )

và tính chất an.bn = ( a.b )n ( với n ∈ N* )

a) ( 3x + 1 )2 - ( x + 1 )2

= [ ( 3x + 1 ) - ( x + 1 ) ][ ( 3x + 1 ) + ( x + 1 ) ]

= ( 3x + 1 - x - 1 )( 3x + 1 + x + 1 )

= 2x( 4x + 2 )

= 2x.2( 2x + 1 )

= 4x( 2x + 1 )

b) ( x + y )2 - ( x - y )2

= [ ( x + y ) - ( x - y ) ][ ( x + y ) + ( x - y ) ]

= ( x + y - x + y )( x + y + x - y )

= 2y.2x = 4xy

c) ( 2xy + 1 )2 - ( 2x + y )2

= [ ( 2xy + 1 ) - ( 2x + y ) ][ ( 2xy + 1 ) + ( 2x + y ) ]

= ( 2xy + 1 - 2x - y )( 2xy + 1 + 2x + y )

= [ ( 2xy - 2x ) - ( y - 1 ) ][ ( 2xy + 2x ) + ( y + 1 ) ]

= [ 2x( y - 1 ) - ( y - 1 ) ][ 2x( y + 1 ) + ( y + 1 ) ]

= ( y - 1 )( 2x - 1 )9 y + 1 )( 2x + 1 )

d) 9( x - y )2 - 4( x + y )2

= 32( x - y )2 - 22( x + y )2 

= [ 3( x - y ) ]2 - [ 2( x + y ) ]2

= ( 3x - 3y )2 - ( 2x + 2y )2

= [ ( 3x - 3y ) - ( 2x + 2y ) ][ ( 3x - 3y ) + ( 2x + 2y ) ]

= ( 3x - 3y - 2x - 2y )( 3x - 3y + 2x + 2y ) 

= ( x - 5y )( 5x - y )

e) ( 3x - 2y )2 - ( 2x - 3y )2

= [ ( 3x - 2y ) - ( 2x - 3y ) ][ ( 3x - 2y ) + ( 2x - 3y ) ]

= ( 3x - 2y - 2x + 3y )( 3x - 2y + 2x - 3y )

= ( x + y )( 5x - 5y )

= ( x + y )5( x - y )

f) ( 4x2 - 4x + 1 ) - ( x + 1 )2

= ( 2x - 1 )2 - ( x + 1 )2

= [ ( 2x - 1 ) - ( x + 1 ) ][ ( 2x - 1 ) + ( x + 1 ) ]

= ( 2x - 1 - x - 1 )( 2x - 1 + x + 1 )

= 3x( x - 2 )