Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)\)
\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3\)
\(=6a^2b+2b^3\)
\(=2b\left(3a^2+b^2\right)\)
a/\(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=\left(a^3+3a^2b+3ab^2+b^3\right)-\left(a^3-3a^2b+3ab^2-b^3\right)\)\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^2\)
\(=6ab^2+2b^3\)(rút gọn hết)
b/\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-2xz+2xz+2xy-3xz-3yz-3xy\right).\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
Hok tốt
Đặt \(x+y-z=a;x-y+z=b;y+z-x=c\)
Ta có:\(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(A=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)
\(A=\left(a+b\right)^3+3\left(a+b\right)\cdot c\cdot\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(A=a^3+b^3+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(A=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Hay \(A=3\cdot2x\cdot2y\cdot2z\)
\(A=24xyz\)
a) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=x^3+y^3+z^3+3x^2y+3x^2z+3y^2z+3xy^2+3xz^2+3yz^2+6xyz-x^3-y^3-z^2\)
\(=3x^2y+3xy^2+3x^2z+3xz^2+3y^2z+3yz^2+6xyz\)
\(=3xy\left(x+y\right)+3xz\left(x+z\right)+3yz\left(y+z\right)+6xyz\)
\(=3\left[xy\left(x+y\right)+xz\left(x+z\right)+yz\left(y+z\right)+2xyz\right]\)
\(=3\left[xy\left(x+y\right)+x^2z+xz^2+y^2z+yz^2+2xyz\right]\)
\(=3\left[xy\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)+yz\left(x+y\right)\right]\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
b) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3\)
\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)
\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-2y+z\right)-\left(x-y\right)\left(y-2z+x\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-y+2z-x\right)\)
\(=\left(x-z\right)\left(x-y\right)\left(3z-3y\right)\)
\(=3\left(x-z\right)\left(x-y\right)\left(z-y\right)\)
a) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
\(=\left[\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3\right]-\left(y^2+z^2\right)^3\)
\(=\left(x^2+y^2+z^2-x^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]-\left(y^2+z^2\right)^3\)
\(=\left(y^2+z^2\right)\left(x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4\right)-\left(y^2+z^2\right)^3\)
\(=\left(y^2+z^2\right)\left[x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4-\left(y^2+z^2\right)^2\right]\)
\(=\left(y^2+z^2\right)\left(x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4-y^4-2y^2z^2-z^4\right)\)
\(=\left(y^2+z^2\right)\left(3x^4+3x^2y^2-3x^2z^2-3y^2z^2\right)\)
= 3(y2+z2)(x4+x2y2-x2z2-y2z2)
= 3(y2+z2)[x2(x2+y2)-z2(x2+y2)]
= 3(y2+z2)(x2-z2)(x2+y2)
= 3(y2+z2)(x-z)(x+z)(x2+y2)
b) \(\left(x+y\right)^3-x^3-y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)
\(=3x^2y+3xy^2=3xy\left(x+y\right)\)
c) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)^2.z+3\left(x+y\right).z^2+z^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)^2.z+3\left(x+y\right).z^2-\left(x^3+y^3\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2+3\left(x+y\right).z+3z^2\right]-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2+3xz+3yz+3z^2-x^2+xy-y^2\right)\)
= (x+y)[3xy+3xz+3yz+3z2 ]
= 3(x+y)(xy+xz+yz+z2)
= 3(x+y)[x(y+z)+z(y+z)]
= 3(x+y)(x+z)(y+z)
a) \(\left(x^2+y^2\right)^3+\left(z^2-x^3\right)-\left(y^2+z^2\right)^3\)
\(=x^6+3x^4y^2+3x^4y^2+y^6+z^2+-x^2+-y^6+-3y^4z+-3y^2z^4+-z^6\)
\(=x^6+3x^4y^2+3x^2y^4+-3y^4z^4+-z^6+-x^2+z^2\)
b) \(\left(x+y\right)^3-x^3-y^3\)
\(=x^3+3x^2y+3xy^2+y^3+-x^3+-y^3\)
\(=\left(x^3+-x^3\right)+\left(3x^2y\right)+\left(3xy^2\right)+\left(y^3+-y^3\right)\)
\(=3x^2y+3xy^2\)
c) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=x^3+3x^2y+3x^2z+3xy^2+6xyz+3xz^2+y^3+3y^2z+3yz^2+z^2-x^3-y^3-z^3\)
\(=3x^2y+3x^2z+3xy^2+3xy^2+6xyz+3xz^2+3y^2z+3yz^2\)
P/s: Ko chắc
a)(x+y)2-(x-y)2
=(x+y-x+y)(x+y+x-y)
=2y.2x=4xy
b)(3x+1)2-(x+1)2
=(3x+1-x-1)(3x+1+x+1)
=2x.(4x+2)
=4x(2x+1)
c) x3+y3+z3-3xyz
= (x+y)3- 3xy(x+y) +z3-3xyz
=(x+y+z)( x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=(x+y+z)(x2+y2+z2-xy-xz-yz)
Phân tích đa thức sau thành nhân tử :
a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
b) \(x^3+y^3+z^3-3xyz\)
a)(a+b+c)3 - a3 - b3 - c3
= (a+b+c-a)( a2+b2+c2+2ab+2bc+2ac-a2-ab-ac+a2) - (b+c)(b2-bc+c2)
=(b+c)(a2+ab+ac+bc)
b) x3+y3+z3-3xyz
= (x+y)3-3xy(x+y) +z3-3xyz
= (x+y+z)(x2+y2+2xy-xz-yz+z2) - 3xy(x+y+z)
=(x+y+z)( x2+y2+z2-xy-yz-xz)
a. \(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=x^3+y^3+z^3+3\cdot\left(x+y\right)\cdot\left(y+z\right)\cdot\left(z+x\right)-x^3-y^3-z^3\)
\(=3\cdot\left(x+y\right)\cdot\left(y+z\right)\cdot\left(z+x\right)\)
b. \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y+z\right)\cdot\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)