Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+4x^2+4x+3\)
\(=x^3+3x^2+x^2+3x+x+3\)
\(=x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+x+1\right)\)
\(x^2-y^2+4y-4\)
\(=x^2-\left(y^2-4y+4\right)\)
\(=x^2-\left(y-2\right)^2\)
\(=\left(x-y+2\right)\left(x+y-2\right)\)
\(x^4+x^3y-xy^3-y^4\)
\(=x^3\left(x+y\right)-y^3\left(x+y\right)\)
\(=\left(x+y\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
Chúc bạn học tốt.
\(4x^3-13x^2+9x-18 \)
\(=4x^2\left(x-3\right)-x\left(x-3\right)+6\left(x-3\right)\)
\(=\left(x-3\right)\left(4x^2-x+6\right)\)
\(x^4y-3x^3y^2+3x^2y^3+xy^4=xy\left(x^3-3x^2y+3xy^2+y^3\right)\)
\(2xy-x^2+3y^2-4y+1\)
\(=-\left(x^2-2xy+y^2\right)+4y^2-4y+1\)
\(=-\left(x-y\right)^2+\left(2y-1\right)^2\)
\(=\left(2y-1+x-y\right)\left(2y-1-x+y\right)\)
\(=\left(y+x-1\right)\left(3y-x-1\right)\)
=x3(x+2)-13x2+12x-26x+24
=x3(x+2)-x(13x-12)-2(13x-12)
=x3(x+2)-(13x-12)(x+2)
=(x+2)(x3-x-12x+12)
(x+2)[(x2-1)-12(x-1)]
=(x+2)[x(x-1)(x+1)-12(x-1)]
=(x+2)(x-1)[x(x+1)-12]
=(x+2)(x-1)(x2+x-12)
=(x+2)(x-1)(x2-3x+4x-12)
=(x+2)(x-1)[x(x-3)+4(x+3)]
=(x+2)(x-1)(x-3)(x+4)
trong bài làm của mk có hàng k có dấu "=" chỗ đó có dâu"=" nha!
\(x^4+13x^2+36=x^4+4x^2+9x^2+36\)
\(=x^2\left(x^2+4\right)+9\left(x^2+4\right)=\left(x^2+9\right)\left(x^2+4\right)\)
a) \(x^3+6x^2=x^2\left(x+6\right)\)
b) \(x^4+4y^4=1\left(x^4+4y^4\right)\)