K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2015

= x^8 - x^7 + x^6 - x^5 + x^4 + x^7 - x^6 + x^5 - x^4 + x^3 + x^6 - x^5 + x^4 - x^3 + x^2 + x^5 - x^4 + x^3 - x^2 + x + x^4 - x^3 + x^2 - x + 1 

= (x^8 - x^7 + x^6 - x^5 + x^4) + (x^7 - x^6 + x^5 - x^4 + x^3) + (x^6 - x^5 + x^4 - x^3 + x^2) + (x^5 - x^4 + x^3 - x^2 + x) + (x^4 - x^3 + x^2 - x + 1) 

= x^4(x^4 - x^3 + x^2 - x + 1) + x^3(x^4 - x^3 + x^2 - x + 1) + x^2(x^4 - x^3 + x^2 - x + 1) + x(x^4 - x^3 + x^2 - x + 1) + (x^4 - x^3 + x^2 - x + 1) 

= (x^4 + x^3 + x^2 + x + 1)(x^4 - x^3 + x^2 - x + 1)

16 tháng 12 2016

2222222222222222222222222222222222222222222222222222222222223333333

3 tháng 7 2019

\(x^8+3x^4+4\)

\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)

\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)

\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)

3 tháng 7 2019

\(4x^4+4x^3+5x^2+2x+1\)

\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)

\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)

\(=\left(2x^2+x+1\right)^2\)

16 tháng 11 2018

a, \(x^3-x^2-4\)

\(=x^3-2x^2+x^2-2x+2x-4\)

\(=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+x+2\right)\)

16 tháng 11 2018

a) \(x^3-x^2-4\)

\(=x^3-2x^2+x^2-2x+2x-4\)

\(=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+x+2\right)\)

b) \(x^8-98x^4+1\)

\(=\left(x^4\right)^2+2\cdot x^4\cdot1+1^2-100x^4\)

\(=\left(x^4+1\right)^2-\left(10x^2\right)^2\)

\(=\left(x^4-10x^2+1\right)\left(x^4+10x^2+1\right)\)

2 tháng 11 2018

\(x^8+x+1\)

\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

7 tháng 11 2018

Mình đã làm xong lâu rồi bạn :)

Stop đào mộ :)

27 tháng 7 2017

1 ) \(x^5+x+1\)

\(=\left(x^5-x^2\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

b ) \(x^8+x^4+1\)

\(=\left(x^8+2x^4+1\right)-x^4\)

\(=\left(x^4+1\right)^2-\left(x^2\right)^2\)

\(=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)

28 tháng 7 2017

Cảm ơn bạn

16 tháng 8 2019

\(A=xy+4\)

Bạn hội con bò gì đó ơi cho mk tham gia đc không vì là hội học hành nên .....

13 tháng 6 2015

a) \([(x-y)3 + (y-z)3]+ (z-x)3\)=\(\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)

\(=\left(x-z\right)\left[\left(\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right)\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]=\left(x-z\right)\left[\left(x-2y+z\right)\left(x+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)=\left(x-z\right)\left(x-y\right)\left(z-y\right)3\)

b) \(=y^2\left(x^2y-x^3+z^3-z^2y\right)-z^2x^2\left(z-x\right)=y^2\left[-y\left(z^2-x^2\right)-\left(z^3-x^3\right)\right]-z^2x^2\left(z-x\right)\)

\(=y^2\left(z-x\right)\left(-yz-xy-z^2-zx-x^2\right)-z^2x^2\left(z-x\right)=\left(z-x\right)\left(-y^3z-xy^2-z^2y^2-xyz-x^2y^2-z^2x^2\right)\)

đến đây coi như là thành nhân tử rồi nha. em muốn gọn thì ráng ngồi nghĩ rồi tách nha. chỉ cần nhóm mấy cái có ngoặc giống nhau là đc. k khó đâu. chịu khó nghĩ để rèn luyện nha

c) \(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)

\(\left(9a^3-6a^2\right)+\left(6a^2-4a\right)+\left(-9a+6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)

d) em sửa đề đi. đề sai rồi. đồng nhất hệ số phải có dấu bằng nha.

có gì liên hệ chị. đúng nha ;)

26 tháng 2 2015

      x8 + x4 +1 = ( x+ x+ x6) - ( x7  + x+ x) + ( x+ x4  + x3 ) - (x3 - x2 - x ) + ( x+ x + 1)

                         =  x6( x2 + x + 1 ) - x5( x2 + x + 1 ) + x3( x2 + x +1 ) - x( x2 + x +1 ) + ( x2 + x +1 )

                         =  ( x2 + x +1 )( x6 - x5 + x3 - x + 1 )