Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=x2 (1-x2 ) + 2x2 (x+1)
=-x2 (x2-1) + 2x2 (x+1)
= -x2 (x+1)(x-1) + 2x2 (x-1)
Đến đây đã xuất hiện nhân tử chung là (x-1)
Em chỉ việc nhóm vào là xong
Chúc em học giỏi!
\(x^4+2x^3-4x-4\)
\(=x^4+2x^3-4x-4+2x^2-2x^2\)
\(=\left(x^4-2x^2\right)+\left(2x^3-4x\right)+\left(2x^2-4\right)\)
\(=x^2\left(x^2-2\right)+2x\left(x^2-2\right)+2\left(x^2-2\right)\)
\(=\left(x^2+2x+2\right)\left(x^2-2\right)\)
\(=\left(x^2+2x+2\right)\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)
\(x^4-2x^3+2x-1\)
\(=\left(x^4-3x^3+3x^2-x\right)+\left(x^3-3x^2+3x-1\right)\)
\(=x\left(x-1\right)^3+\left(x-1\right)^3\)
\(=\left(x+1\right)\left(x-1\right)^3\)
\(x^4-2x^3-2x^2-2x-3=\left(x^4+x^3+x^2+x\right)-\left(3x^3+3x^2+3x+3\right)=x\left(x^3+x^2+x+1\right)-3\left(x^3+x^2+x+1\right)\)\(=\left(x^3+x^2+x+1\right)\left(x-3\right)=\left(x-3\right)\left[\left(x^3+x^2\right)+\left(x+1\right)\right]=\left(x-3\right)\left[x^2\left(x+1\right)+\left(x+1\right)\right]=\left(x-3\right)\left(x+1\right)\left(x^2+1\right)\)
x4-2x3+2x-1
=x4-3x3+3x2-x+x3-3x2+3x-1
=x(x3-3x2+3x-1)+1(x3-3x2+3x-1)
=(x3-3x2+3x-1)(x+1)
=(x-1)3(x+1)
x^4 - 2x^3 +2x -1
=x^4 - x^3 - x^3 + x^2 -x^2 +x +x -1
=x^3(x-1) - x^2(x - 1) -x(x - 1) + (x - 1)
=(X - 1)(X^3 - X^2 -X +1)
=(X-1){ X^2(x - 1) - (x-1) }
=(x-1){ (x-1)(X^2 - 1)}
=(x - 1)(x - 1)(x - 1)( x + 1)= (X - 1)^3(X - 1)
x4 + 2x3 + 2x2 + 2x + 1
= x4 - 2x2 =
= x2 x x2 - x2 - x2 + 1 = x2 (1- x2 ) + ( 1 - x2 )
= ( 1 - x2 ) x ( 1 - x2 )
= ( 1 - x2 ) 2