Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^5+x+1=x^5-x^2+x^2+x+1=x^2\left(x^3-1\right)+\left(x^2+x+1\right)=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(x^{10}+x^5+1=x^{10}-x+x^5-x^2+x^2+x+1=x\left(x^9-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)\left(x^6+x^3+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)\left(x^6+x^3+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)\left(x^6+x^3+1\right)+x^2+1\right]\)
= x^10 - x + x^5 - x^2 + x^2 + x + 1
= x ( x^9 - 1 ) + x^2 (x^3 - 1 ) + x^2 + x + 1
= x [ ( x^3 - 1) ( x^6 + x^3 + 1 )] + x^2 ( x - 1 )(x^2 + x + 1 ) + x^2 + x + 1
= x ( x - 1 )(x^2 + x + 1 )(x^6 + x^3 + 1) + x^2 (x-1 )(x^2 + x+ 1 ) + x^2 + x + 1
= (x^2 + x + 1 )[ x(x-1)(x^6 + x^3 + 1 ) + x^2 + 1 )
Nhân ra giúp mình nha
(x^2-4x)^2 + (x-2)^2-10
{x^2-(2x)^2}+(x-2)-5^2
{x\(^2\)- (2x)\(^2\)} {x\(^2\)+ (2x)\(^2\)}+{(x-2) - 5\(^2\)} {(x-2)+5\(^2\)}
đén đây bn tự lm típ
x10 + x5 + 1 = (x10 - x) + (x5 - x2) + (x2 + x + 1) = x.[(x3)3 - 1] + x2.(x3 - 1) + (x2 + x + 1)
= x.(x3 - 1).(x6 + x3 + 1) + x2.(x3 - 1) + (x2 + x + 1)
= (x2 + x + 1). [x.(x -1).(x6 + x3 + 1) + x2 + 1 ]
4x2-3x-1=(3x2-3x)+(x2-1)=3x(x-1)+(x-1)(x+1)=(x-1)(3x+x+1)=(x-1)(4x+1)
\(=\left(x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)
\(A\) \(=\) \(x^{10}+x^5+1\)
\(A=\left(x^{10}+x\right)+\left(x^5-^2\right)+\left(x^2+x+1\right)\)
\(A=x\left(x^3-1\right)\left(x^6+x^3+1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(A=\left(x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)
hơi tắt các bạn tự hiểu nhé
(thanks)
\(x^{10}+x^2+1\)
\(=x^{10}+x^8-x^8+x^6-x^6+x^4-x^4+x^2+1\)
\(=\left(x^{10}+x^8+x^6\right)-\left(x^8+x^6+x^4\right)+\left(x^4+x^2+1\right)\)
\(=x^6\left(x^4+x^2+1\right)-x^4\left(x^4+x^2+1\right)+\left(x^4+x^2+1\right)\)
\(=\left(x^6-x^4+1\right)\left(x^4+x^2+1\right)\)
\(=\left(x^6-x^4+1\right)\left(x^4+x^3-x^3+x^2+x^2-x^2+x-x+1\right)\)
\(=\left(x^6-x^4+1\right)\)
\(\left[\left(x^4-x^3+x^2\right)+\left(x^3-x^2+x\right)+\left(x^2-x+1\right)\right]\)
\(=\left(x^6-x^4+1\right)\)
\(\left[x^2\left(x^2-x+1\right)+x\left(x^2-x+1\right)+\left(x^2-x+1\right)\right]\)
\(=\left(x^6-x^4+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)\)
x10+x2+1
=( x10 - x ) + ( x2 + x + 1)
= x[ (x3)3-1] + ( x2 + x +1)
=x[( x3-1)( x6 + x3 +1) + (x2 + x +1)
=x[(x-1)(x2 + x +1)( x6 + x3 +1)] + (x2 + x +1)
=x(x2 + x +1)[(x-1)( x6 + x3 +1) +1 ]
=x2(x2 + x +1)(x6-x5+x3-x2+1)