Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt y=x2+x+1
Thay y vào biểu thức ta được
y(y+1)-12
=y2 + y - 12
= y2 - 3y + 4y -12
= y(y-3) + 4(y-3)
= (y-3)(y+4)
\(a,\left(x^2+x+1\right)\left(x^2+x+2\right)-12.\)
Đặt \(x^2+x+1=a\)
\(\Rightarrow a\left(a+1\right)-12\)\(=a^2+a-12\)
\(=a^2-3a+4a-12\)
\(=a\left(a-3\right)+4\left(a-3\right)\)
\(=\left(a-3\right)\left(a+4\right)\)
\(=\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(b,\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
Đặt \(x^2+x=a\)
\(\Rightarrow a^2+4a-12\)
\(=a^2-2a+6a-12\)
\(=a\left(a-2\right)+6\left(a-2\right)\)
\(=\left(a-2\right)\left(a+6\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+6\right)\)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
3(x4+x+1)-(x2+x+1)2
=3(x2+x+1)(x2-x+1)-(x2+x+1)2
=(x2+x+1)[3(x2-x+1)-(x2-x+1)
=(x2+x+1)(3x2-3x+3-x2+x-1)
=(x2+x+1)(2x2-2x+2)
=(x2+x+1)2(x2-x+1)
bạn vu cong thien làm sai rồi.
\(x^4+x^2+1=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
chứ không phải là:
\(x^4+x+1=\left(x^2+x+1\right)\left(x^2-x+1\right)\)đâu!
\(A=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-20\)
\(=\left(x^2+5x+4\right)\cdot\left(x^2+5x+6\right)-20\)
Đặt: \(x^2+5x+5=a\)Khi đó ta có:
\(A=\left(a-1\right)\left(a+1\right)-20=a^2-21=\left(a-\sqrt{21}\right)\left(a+\sqrt{21}\right)\)
tự thay trở lại
Ta có:\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2=3x^4+3x^2+3-x^4-x^2-1-2x^3-2x-2x^2\)
\(=2x^4-2x^3-2x+2=2x^3\left(x-1\right)-2\left(x-1\right)=2\left(x^3-1\right)\left(x-1\right)\)
\(=2\left(x-1\right)^2\left(x^2+x+1\right)\)
\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)
\(=3\left(x^4+x^2+1\right)-\left(x^4+x^2+1+2x^3+2x^2+2x\right)\)
\(=\left(x^4+x^2+1\right)\left(3-2x^3-2x^2-2x\right)\)
\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)
\(=3\left(x^2+x+1\right)\left(x+x^2+x+1\right)\)
\(=3\left(x^2+x+1\right)\left(x^2+2x+1\right)\)
\(=3\left(x^2+x+1\right)\left(x+1\right)^2\)
\(Dat:a^2+a+1=b\Rightarrow....=a\left(a+1\right)-12=\left(a+4\right)\left(a-3\right)\)
=
a) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\) (1)
Đặt x2 + x +1 = t
Ta có : \(t\left(t+1\right)-12=t^2+t-12=t^2-3t+4t-12\)
\(=t\left(t-3\right)+4\left(t-3\right)=\left(t-3\right)\left(t+4\right)\)
Thay vào (1), ta được : \(\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)
b) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\) (2)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt x2 + 7x + 11 = y
Ta có : \(\left(y-1\right)\left(y+1\right)-24=y^2-1-24=y^2-25=\left(y-5\right)\left(y+5\right)\)
Thay vào (2), ta được : \(\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-80=\left(x^2-5x+4\right)\left(x^2-5x+6\right)-80\)
Đặt \(x^2-5x+4=t\), ta có:
\(t\left(t+2\right)-80=t^2-2t+1-81=\left(t-1\right)^2-9^2=\left(t-1-9\right)\left(t-1+9\right)=\left(t-10\right)\left(t+8\right)\)
\(=\left(x^2-5x+4-10\right)\left(x^2-5x+4+8\right)=\left(x^2-5x-6\right)\left(x^2-5x+12\right)\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt x2 + x + 1 = t, ta có:
t(t + 1) - 12
= t2 + t + 1/4 - 49/4
= (t + 1/2)2 - (7/2)2
= (t + 1/2 + 7/2)(t + 1/2 - 7/2)
= (t + 4)(t - 3)
nhân váo như bình thường sau đó bấm máy tính shift solve =? rồi chia hoocne