K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2020

\(x^3+y^3+z^3-3xyz\)

\(=x^3+3x^2y+3xy^2+y^3+z^3-3x^2y-3xy^2-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)\cdot z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2+z^2-zx-yz-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

22 tháng 10 2020

x3 + y3 + z3 - 3xyz

= ( x3 + y3 ) + z3 - 3xyz

= ( x + y )3 - 3xy( x + y ) + z3 - 3xyz

= [ ( x + y )3 + z3 ] - [ 3xy( x + y ) + 3xyz ]

= ( x + y + z )[ ( x + y )2 - ( x + y )z + z2 ] - 3xy( x + y + z )

= ( x + y + z )( x2 + 2xy + y2 - xz - yz + z2 - 3xy )

= ( x + y + z )( x2 + y2 + z2 - xy - yz - xz )

9 tháng 4 2019

Hứa mai thi hsg song mình sẽ giải bài này cho bạn nhé ^^

Giờ mình phải ôn

Tại hông có thời gian để lm. Mà mình hứa mai sẽ làm cho bn <3

9 tháng 4 2019

À câu hỏi tương tự có đấy

Nói thiệt mà

đề y chang lun

5 tháng 9 2018

mk chỉnh đề

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Ta có :

\(x^3+y^3+z^3-3xyz\)

\(\Rightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(\Rightarrow\left(x+y+z\right)\left[\left(x+y^2\right)-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

P/s tham khảo nha,  Tớ  sửa đề dấu - thành dấu +nha

hok tốt

24 tháng 10 2015

x^3+y^3+z^3-3xyz

= (x^3+3x^2y+3xy^2+y^3)+z^3-(3x^2y+3xy^2+3xyz)

= (x+y)^3+z^3 -3xy(x+y+z)

= (x+y+z)(x+y)^2-(x+y)z+z^2)-3xy(x+y+z)

 =(x+y+z)(x^2+y^2+2xy-xz-yz+z^2-3xy)

=(x+y+z)(x^2+y^2+z^2-xz-yx-xy)  

24 tháng 10 2015

x^3+y^3+z^3-3xyz

= (x^3+3x^2y+3xy^2+y^3)+z^3-(3x^2y+3xy^2+3xyz)

= (x+y)^3+z^3 -3xy(x+y+z)

= (x+y+z)(x+y)^2-(x+y)z+z^2)-3xy(x+y+z)

 =(x+y+z)(x^2+y^2+2xy-xz-yz+z^2-3xy)

=(x+y+z)(x^2+y^2+z^2-xz-yx-xy)  

27 tháng 7 2016

  Ta có: 
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz 
= [(x+y)³ + z³] - 3xy(x+y+z) 
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z) 
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy] 
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy) 
= (x+y+z)(x² + y² + z² - xy - xz - yz). 

21 tháng 10 2018

bạn làm rõ hơn được ko

19 tháng 7 2018

\(\left(a+b\right)^3-\left(a-b\right)^3\)

\(=a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)\)

\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3\)

\(=6a^2b+2b^3\)

\(=2b\left(3a^2+b^2\right)\)

19 tháng 7 2018

a/\(\left(a+b\right)^3-\left(a-b\right)^3\)

\(=\left(a^3+3a^2b+3ab^2+b^3\right)-\left(a^3-3a^2b+3ab^2-b^3\right)\)\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^2\)

\(=6ab^2+2b^3\)(rút gọn hết)

b/\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-2xz+2xz+2xy-3xz-3yz-3xy\right).\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

Hok tốt

28 tháng 9 2015

\(x^3+y^3+z^3+3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3+3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y+z\right)+z^3\)

\(=\left(x+y+z\right)^3-3\left(x+y\right)z\left(x+y+z\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(xy+yz+xz\right)\)

\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3xz\right]\)

\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

28 tháng 9 2015

Trần Đức Thắng sai rùi X^3+y^3+z^3+3xyz cơ mà có phải X^3+y^3+z^3-3xyz đâu mà làm vậy 

22 tháng 6 2017

\(2,25x^2-12x-13\)

\(=25x^2-25x+13x-13\)

\(=25x\left(x-1\right)+13\left(x-1\right)\)

\(=\left(x-1\right)\left(25x+13\right)\)

\(3,2y^2-3y-5\)

\(=2y^2+2y-5y-5\)

\(=2y\left(y+1\right)-5\left(y+1\right)\)

\(=\left(y+1\right)\left(2y-5\right)\)

Còn bài 1 mik đang nghĩ, khi nào biết mik trả lời nha!!!

Chúc bn học giỏi!!!

22 tháng 6 2017

giúp Mk Mk tk