Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= \(8x^4-8x^3+6x^3-6x^2+3x^2-3x+x-1\)
\(=\left(x-1\right)\left(8x^3+6x^2+3x+1\right)\)
\(=\left(x-1\right)\left(8x^3+4x^2+2x^2+x+2x+1\right)\)
\(=\left(x-1\right)\left(2x+1\right)\left(4x^2+x+1\right)\)
a) \(2x^3+3x^2-8x-12=0\)
\(\Leftrightarrow\left(2x^3-8x\right)+\left(3x^2-12\right)=0\)
\(\Leftrightarrow2x\left(x^2-4\right)+3\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\)\(x-2=0\)
hoặc \(x+2=0\)
hoặc \(2x+3=0\)
\(\Leftrightarrow\)\(x=2\)
hoặc \(x=-2\)
hoặc \(x=-\frac{3}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;-\frac{3}{2}\right\}\)
b) \(x^3-4x^2-x+4=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(x-4=0\)
hoặc \(x-1=0\)
hoặc \(x+1=0\)
\(\Leftrightarrow\)\(x=4\)
hoặc \(x=1\)
hoặc \(x=-1\)
Vậy tập nghiệm của phương trình là \(S=\left\{4;1;-1\right\}\)
c) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^2+x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)
d) \(x^4-3x^3+3x^2-x=0\)
\(\Leftrightarrow x\left(x^3-3x^2+3x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;1\right\}\)
e) \(\left(x+1\right)\left(x^2-2x+3\right)=x^3+1\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)=\left(x+1\right)\left(x^2-x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-2x+3=x^2-x+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;2\right\}\)
g) \(x^3+3x^2+3x+1=4x+4\)
\(\Leftrightarrow\left(x+1\right)^3=4\left(x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x+1=\pm2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\) hoặc \(x=1\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;1;-3\right\}\)
b) \(x^3-4x^2-x+4=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\pm1\end{cases}}\)
c) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow x=2\) ( Do \(x^2+x+1>0\) )
làm tạm câu này vậy
a/\(\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)^2=5x^4\)
\(\Leftrightarrow\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)+4x^4=9x^4\)
\(\Leftrightarrow\left\{\left(x^2-x+1\right)^2+2x^2\right\}=\left(3x^2\right)^2\)
\(\Leftrightarrow\left(x^2-x+1\right)^2+2x^2=3x^2\)(vì 2 vế đều không âm)
\(\Leftrightarrow\left(x^2-x+1\right)=x^2\)
\(\Leftrightarrow\left|x\right|=x^2-x+1\)\(\left(x^2-x+1=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=x^2-x+1\\-x=x^2-x+1\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x^2+1=0\left(vo.nghiem\right)\end{cases}}}\)
Vậy...
a/ \(\left(x-2\right)^2=11+6\sqrt{2}\)
\(\Leftrightarrow\left(x-2\right)^2=\left(3+\sqrt{2}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=3+\sqrt{2}\\x-2=-3-\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5+\sqrt{2}\\x=-1-\sqrt{2}\end{matrix}\right.\)
b/ \(x^2-10x+25=27-10\sqrt{2}\)
\(\Leftrightarrow\left(x-5\right)^2=\left(5-\sqrt{2}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=5-\sqrt{2}\\x-5=\sqrt{2}-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10-\sqrt{2}\\x=\sqrt{2}\end{matrix}\right.\)
c/ \(4x^2+4x+1=28-10\sqrt{3}\)
\(\Leftrightarrow\left(2x+1\right)^2=\left(5-\sqrt{3}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=5-\sqrt{3}\\2x+1=\sqrt{3}-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4-\sqrt{3}}{2}\\x=\frac{-6+\sqrt{3}}{2}\end{matrix}\right.\)
d/ \(x^2+2\sqrt{5}x+5=21-4\sqrt{5}\)
\(\Leftrightarrow\left(x+\sqrt{5}\right)^2=\left(2\sqrt{5}-1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{5}=2\sqrt{5}-1\\x+\sqrt{5}=1-2\sqrt{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}-1\\x=1-3\sqrt{5}\end{matrix}\right.\)
e/ \(x^2+2\sqrt{12}x+12=13-4\sqrt{3}\)
\(\Leftrightarrow\left(x+2\sqrt{3}\right)^2=\left(2\sqrt{3}-1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2\sqrt{3}=2\sqrt{3}-1\\x+2\sqrt{3}=1-2\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1-4\sqrt{3}\end{matrix}\right.\)
f/ \(4x^2-12\sqrt{2}x+18=51-10\sqrt{2}\)
\(\Leftrightarrow\left(2x-3\sqrt{2}\right)^2=\left(5\sqrt{2}-1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5\sqrt{2}=5\sqrt{2}-1\\2x-2\sqrt{2}=1-5\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{10\sqrt{2}-1}{2}\\x=\frac{1-3\sqrt{2}}{2}\end{matrix}\right.\)
a: Ta có: \(x^2+3x+4=0\)
\(\text{Δ}=3^2-4\cdot1\cdot4=9-16=-7< 0\)
Do đó: Phương trình vô nghiệm
đúng ,mình k 2 nhé