Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x-1)(2x+5)
b) (x+1)(x-5)
c) [(x+1)^2](x^2+x+1)
d) (x-1)(x^3-x-1)
e) (x+y)(x-y-1)
a) 2x2 + 3x - 5 = 2x2 + 5x - 2x - 5 = x(2x + 5) - (2x + 5) = (x - 1)(2x + 5)
b) x2 - 4x - 5 = x2 - 5x + x - 5 = x(x - 5) + (x - 5) = (x + 1)(x - 5)
c) x4 + x3 + x + 1 = x3(x + 1) + (x + 1) = (x + 1)(x3 + 1) = (x + 1)2(x2 - x + 1)
d) x4 - x3 - x2 + 1 = x3(x - 1) - (x - 1)(x + 1) = (x - 1)(x3 - x - 1)
e) -x - y2 + x2 - y = -(x + y) + (x - y)(x + y) = (-1 + x - y)(x + y)
a/ \(M=\left(-2x^4+x^2+5\right)-\left(5x^2-x^3+4x\right)\)
\(=-2x^4+x^2+5-5x^2+x^3-4x\)
\(=-2x^4+x^3-4x^2-4x+5\)
Vậy...
b/ \(M=-2x^4+x^2+5+5x^2-x^3+4x\)
\(=-2x^4-x^4+6x^2+4x+5\)
Vậy...
c/ \(M=\left(5x^2-x^3+4x\right)-\left(-2x^4+x^2+5\right)\)
\(=5x^2-x^3+4x+2x^4-x^2-5\)
\(=2x^4-x^3+4x^2-5\)
Vậy...
d/ \(M=-\left(5x^2-x^3+4x\right)\)
\(=x^4-5x^2-4x\)
Vậy..
a. \(x^5+x+1\)
\(=\left(x^5-x^2\right)+x^2+x+1\)
\(=x^2\left(x^3-1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)\)\(+x^2+x+1\)
\(=\left[x^2\left(x-1\right)+1\right]\left(x^2+x+1\right)\)
\(=\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)
b.\(x^3+x^2+4\)
=\(x^3+2x^2-x^2-2x+2x+4\)
\(=x^2\left(x+2\right)-x\left(x+2\right)+2\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-x+2\right)\)
c.\(x^4+2x^2-24\)
\(=x^4+2x^3-2x^3-4x^2+6x^2+12x-12x-24\)
\(=x^3\left(x+2\right)-2x^2\left(x+2\right)+6x\left(x+2\right)-12\left(x+2\right)\)
\(=\left(x^3-2x^2+6x-12\right)\left(x+2\right)\)
\(=\left[x^2\left(x-2\right)+6\left(x-2\right)\right]\left(x+2\right)\)
\(=\left(x^2+6\right)\left(x-2\right)\left(x+2\right)\)
a, x^5 + x + 1 = x ^ 5 - x^2 + (x ^2 + x + 1) = x^2 ( x-1) ( x^2+x+1) + ( x^2+x+1) = ( x^2+x+1 ) ( x^3-x^2+1)
c, x^4 + 2x^2 -24 = (x^4 +6x^2) - ( 4x^2+24) = x^2( x^2+6) - 4(x^2+6) = (x^2-4)(x^2 +6 ) = (x-2)(x+2)(x^2+6)
Câu 1: Tìm nghiệm của các đa thức:
1. P(x) = 2x -3
⇒2x-3=0
↔2x=3
↔x=\(\frac{3}{2}\)
2. Q(x) = −12−12x + 5
↔-12-12x+5=0
↔-12x=0+12-5
↔-12x=7
↔x=\(\frac{7}{-12}\)
3. R(x) = 2323x + 1515
↔2323x+1515=0
↔2323x=-1515
↔x=\(\frac{-1515}{2323}\)
4. A(x) = 1313x + 1
↔1313x + 1=0
↔1313x=-1
↔x=\(\frac{-1}{1313}\)
5. B(x) = −34−34x + 1313
↔−34−34x + 1313=0
↔-34x=0+34-1313
↔-34x=-1279
↔x=\(\frac{1279}{34}\)
Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4
Giải :cho x2 - 6x + 8 là f(x)
có:f(2)=22 - 6.2 + 8
=4-12+8
=0⇒x=2 là nghiệm của f(x)
có:f(4)=42 - 6.4 + 8
=16-24+8
=0⇒x=4 là nghiệm của f(x)
Câu 3: Tìm nghiệm của các đa thức sau:
1.⇒ (2x - 4) (x + 1)=0
↔2x-4=0⇒2x=4⇒x=2
x+1=0⇒x=-1
-kết luận:x=2 vàx=-1 là nghiệm của A(x)
2. ⇒(-5x + 2) (x-7)=0
↔-5x + 2=0⇒-5x=-2⇒
x-7=0⇒x=7
-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)
3.⇒ (4x - 1) (2x + 3)=0
⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)
2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)
-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)
4. ⇒ x2- 5x=0
↔x.x-5.x=0
↔x.(x-5)=0
↔x=0
x-5=0⇒x=5
-kết luận:x=0 và x=5 là nghiệm của D(x)
5. ⇒-4x2 + 8x=0
↔-4.x.x+8.x=0
⇒x.(-4x+x)=0
⇒x=0
-4x+x=0⇒-3x=0⇒x=0
-kết luận:x=0 là nghiệm của E(x)
Câu 4: Tính giá trị của:
1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2
-X=1⇒f(x) =4
-X=0⇒f(x) =7
-X=2⇒f(x) =89
2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2
-X=-1⇒G(x) =-14
-X=0⇒G(x) =2
-X=1⇒G(x) =20
-X=2⇒G(x) =43
1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)
Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)
Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)
\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)
1. \(A=x^{15}+3x^{14}+5\)
\(A=x^{14}\left(x+3\right)+5\)
\(A=x^{14}+5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)
\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)
\(B=1^{2007}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15\)
\(C=3x\left(7x^2+4x^2-x+8+5\right)\)
\(C=3x\left(0+5\right)\)
\(C=15x\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)
\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
\(D=4x.0+2007\)
\(D=2007\)
\(M=\frac{-2}{7}x^4y\cdot\left(-\frac{21}{10}\right)xy^2z^2=\left(-\frac{2}{7}\cdot-\frac{21}{10}\right)\left(x^4x\right)\left(yy^2\right)z^2=\frac{3}{5}x^5y^3z^2\)
Hệ số 3/5
\(N=-16x^2y^2z^4\cdot\left(-\frac{1}{4}\right)xy^2z=\left(-16\cdot-\frac{1}{4}\right)\left(x^2x\right)\left(y^2y^2\right)\left(z^4z\right)=4x^3y^4z^5\)
Hệ số 4
Làm nốt b Quỳnh đag lm dở.
Ta có \(P\left(x\right)=C\left(x\right)+D\left(x\right)\)
\(P\left(x\right)=2x^4+2x-6x^2-x^3-3+4x^2+x^3-2x^2-2x^4-2x+5x^2+1\)
\(P\left(x\right)=x^2-2\)
Ta có : \(P\left(x\right)=x^2-2=0\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)
Bài làm:
a) \(2x^2+7x+5=\left(2x^2+2x\right)+\left(5x+5\right)=2x\left(x+1\right)+5\left(x+1\right)\)
\(=\left(2x+5\right)\left(x+1\right)\)
b) \(x^3-2x-4=\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(2x-4\right)\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)=\left(x-2\right)\left(x^2+2x+2\right)\)
c) \(x^2+4x+3=\left(x^2+x\right)+\left(3x+3\right)=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
2x2 + 7x + 5 = 2x2 + 2x + 5x + 5 = ( 2x2 + 2x ) + ( 5x + 5 ) = 2x( x + 1 ) + 5( x + 1 ) = ( 2x + 5 )( x + 1 )
x2 + 4x + 3 = x2 + x + 3x + 3 = ( x2 + x ) + ( 3x + 3 ) = x( x + 1 ) + 3( x + 1 ) = ( x + 3 )( x + 1 )