Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(=x^2\left(2x+3\right)+\left(2x+3\right)\)
\(=\left(x^2+1\right)\left(2x+3\right)\)
b)
\(=a\left(a-b\right)+a-b\)
\(=\left(a+1\right)\left(a-b\right)\)
c)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left(x+1-y\right)\left(x+1+y\right)\)
d)
\(=x^3\left(x-2\right)+10x\left(x-2\right)\)
\(=x\left(x^2+10\right)\left(x-2\right)\)
e)
\(=x\left(x^2+2x+1\right)\)
\(=x\left(x+1\right)^2\)
f)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(y-1\right)\left(x+y\right)\)
a,2x3+3x2+2x+3
=(2x3+2x)+(3x2+3)
=2x(x2+1)+3(x2+1)
=(x2+1)(2x+3)
b,a2-ab+a-b
=(a2-ab)+(a-b)
=a(a-b)+(a-b)
=(a-b)(a+1)
c,2x2+4x+2-2y2
=2(x2+2x+1-y2)
=2[(x2+2x+1)-y2 ]
=2[(x+1)2-y2 ]
=2(x+1-y)(x+1+y)
d,x4-2x3+10x2-20x
=(x4-2x3)+(10x2-20x)
=x3(x-2)+10x(x-2)
=(x-2)(x3+10x)
=(x-2)[x(x2+10)]
e,x3+2x2+x
=x(x2+2x+1)
=x(x+1)2
f,xy+y2-x-y
=(xy+y2)-(x-y)
=y(x+y)-(x+y)
=(x+y)(y-1)
Mọi người giúp mình trả lời nhé, nay mình kiểm tra 1 tiết toán nên cần gấp đáp án ạ!
1, x2(x2+2x+1)=x2(x+1)2
2, 2(x2+2x+1-y2)=2(x+1-y)(x+1+y)
3, 16-(x2+2xy+y2)=(4-x-y)(4+x+y)
\(x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
hk tốt
^^
a) 5x2 - 10x = 5x( x - 2 )
b) x2 - y2 - 2x + 2y = (x2 - y2) - (2x - 2y)
= (x - y ) ( x + y)-2 (x-y)
= ( x - y) ( x + y - 2)
c) 4x2 - 4xy - 8y2 = (4x2 - 4xy + 8y2) - 9y2
= (2x - 9y2) - 3y2
= (2x - y - 3y) (2x - y + 3y)
= (2x - 4y) (2x + 2y)
= 4(x - 2y) (x + y)
a) 5x2 - 10x = 5x( x - 2 )
b) x2 - y2 - 2x + 2y = (x2 - y2) - (2x - 2y)
= (x - y ) ( x + y)-2 (x-y)
= ( x - y) ( x + y - 2)
c) 4x2 - 4xy - 8y2 = (4x2 - 4xy + 8y2) - 9y2
= (2x - 9y2) - 3y2
= (2x - y - 3y) (2x - y + 3y)
= (2x - 4y) (2x + 2y)
= 4(x - 2y) (x + y)
\(b,2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x+1+y\right)\left(x+1-y\right)\)
B1:
a) \(5\left(x^2+y^2\right)-20x^2y^2\)
\(=5\left(x^2-4x^2y^2+y^2\right)\)
b) \(=2\left(x^8-16\right)=2\left(x^4-4\right)\left(x^4+4\right)=2\left(x^2-2\right)\left(x^2+2\right)\left(x^4+4\right)\)
B2:
a) Đặt \(x^2-3x+1=y\)
=> \(y^2-12y+27\)
\(=\left(y^2-12y+36\right)-9\)
\(=\left(y-6\right)^2-3^2\)
\(=\left(y-9\right)\left(y-3\right)\)
\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
\(=\left(x+1\right)\left(x-4\right)\left(x^2-3x-10\right)\)
b) Đặt \(x^2+7x+11=t\)
Ta có: \(\left[\left(x+2\right)\left(x+5\right)\right]\cdot\left[\left(x+3\right)\left(x+4\right)\right]-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(t-1\right)\left(t+1\right)-24\)
\(=t^2-25\)
\(=\left(t-5\right)\left(t+5\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
a,\(x^2y^2+y^3+zx^2+yz=\left(x^2y^2+y^3\right)+\left(zx^2+yz\right)\)
\(=y^2\left(x^2+y\right)+z\left(x^2+y\right)\)
\(=\left(y^2+z\right)\left(x^2+y\right)\)
b,\(x^4+2x^3-4x-4=x^4+2x^3+x^2-x^2-4x-4\)
\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
c,\(x^3+2x^2y-x-2y=\left(x^3+2x^2y\right)-\left(x+2y\right)\)
\(=x^2\left(x+2y\right)-\left(x+2y\right)\)
\(=\left(x^2-1\right)\left(x+2y\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+2y\right)\)
Phân tích đa thức thành nhân tử:
b, 20x4-5
= 5(4x4-1)
=5(2x2-1)(2x2+1)
học tốt