Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4+324=\left(x^2-6x+18\right)\left(x^2+6x+18\right)\)
c) \(x^{13}+x^5+1=\left(x^2+x+1\right)\left(x^{11}-x^{10}+x^8-x^7+x^5-x^4+x^3-x+1\right)\)
d) \(x^{11}+x+1=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^5+x^3-x^2+1\right)\)
e) \(x^8+3x^4+4=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
81-(x2+6x)2
=92-(x2+6x)2
=(9+x2+6x)(9-x2-6x)
=(x+3)2(9-x2-6x)
27-64a3
=33-(4a)3
=(3-4a)[32+3*4a+(4a)2]
=(3-4a)( 9+12a+16a2)
\(x^2-y^2+4x+4\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
\(4x^2-y^2+8\left(y-2\right)\)
\(=4x^2-\left(y^2-8y+16\right)\)
\(=4x^2-\left(y-4\right)^2\)
\(=\left(2x+y-4\right)\left(2x-y+4\right)\)
a, \(x^3-x^2-4\)
\(=x^3-2x^2+x^2-2x+2x-4\)
\(=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x+2\right)\)
a) \(x^3-x^2-4\)
\(=x^3-2x^2+x^2-2x+2x-4\)
\(=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x+2\right)\)
b) \(x^8-98x^4+1\)
\(=\left(x^4\right)^2+2\cdot x^4\cdot1+1^2-100x^4\)
\(=\left(x^4+1\right)^2-\left(10x^2\right)^2\)
\(=\left(x^4-10x^2+1\right)\left(x^4+10x^2+1\right)\)
x6+3x4y2-8x3y3+3x2y4+y6= x6+3x4y2+3x2y4+y6-8x3y3=(x2+y2)3-(2xy)3
= (x2+y2-2xy)[(x2+y2)2+2xy(x2+y2)+(2xy)2]= (x-y)2(x4+6x2y2+y4+2x3y+2xy3)
(x2+y2-5)2-4x2y2-16xy-16=(x2+y2-5)2-(4x2y2+16xy+16)=(x2+y2-5)2-(2xy+4)2
=(x2+y2-5+2xy+4)(x2+y2-5-2xy-4)=(x2+2xy+y2-1)(x2-2xy+y2-9)=[(x+y)2-1][(x-y)2-32]=(x+y-1)(x+y+1)(x-y-3)(x-y+3)
x4+324=x4+36x2+324-36x2=(x2+18)2-(6x)2=(x2+18-6x)(x2+18+6x)
a) -7x2 + 5xy +12y2
=-7x2-7xy+12xy+12y2
=-7x(x+y)+12y(x+y)
=(x+y)(12y-7x)
b) x8 + 3x4 + 4
=x8+4x4+4-x4
=(x4+2)2-x4
=(x4-x2+2)(x4+x2+2)
=(x4+x2-2x2+2)(x4+x2+2)
=[x2(x+1)-2(x+1)](x4+x2+1)
=(x+1)(x2-2)(x4+x2+1)
a) ta có : x^2 -x-12 =( x^2 -4x) +(3x-12)=x(x-4) + 3(x-4) =(x+3)(x-4)
b)ta có: x^8 +3x^4 -4= x^4(x^4 +4) - (x^4 +4) =( x^4 -1)(x^4 +4) =(x^2 -1)(x^2 +1)(x^4 +4)
Bạn hội con bò gì đó ơi cho mk tham gia đc không vì là hội học hành nên .....
a)
\(\left(y^3+8\right)+\left(y^2-4\right)\)
\(=\left(y+2\right)\left(y^2-2y+4\right)+\left(y-2\right)\left(y+2\right)\)
\(=\left(y+2\right)\left(y^2-2y+4+y+2\right)\)
\(=\left(y+2\right)\left(y^2+y+6\right)\)
b)
\(x^6-1=\)
\(=\left(x^3+1\right)\left(x^3-1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)\)
a) \(x^4+324\)
\(=\left(x^2\right)^2+18^2+2.x^2.18-36x^2\)
\(=\left(x^2-18\right)^2-\left(6x\right)^2\)
\(=\left(x^2+18+6x\right)\left(x^2+18-6x\right)\)
b) \(64a^2+b^8\)
\(=\left(8a^2\right)^2+\left(b^4\right)^2+2.8a^2.4b^4-16a^2b^4\)
\(=\left(8a^2+b^4\right)^2-\left(ab^2\right)^2\)
\(=\left(8a^2+b^4+4ab^2\right)\left(8a^2+b^4-4ab^2\right)\)
\(a.\)
\(x^4+324\)
\(=\left(x^2\right)^2+18^2\)
\(=\left(x^2+18\right)\left(x^2_{ }-18\right)\)
\(b.\)
\(64a^2+b^8\)
\(=\left(8a^2\right)+\left(b^3\right)^2\)
\(\left(8a-b^3\right)\left(8a+b^3\right)\)