Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
3) \(ab\left(x^2+y^2\right)+xy\left(a^2+b^2\right)\)
\(=abx^2+aby^2+a^2xy+b^2xy\)
\(=ax\left(bx+ay\right)+by\left(ay+bx\right)\)
\(=\left(ay+bx\right)\left(ax+by\right)\)
a) 4x3y - 12x2y3 - 8x4y3 = 4x2y( x - 3y2 - 2x2y2 )
b) 2x2 + 4x + 2 - 2y2 = 2( x2 + 2x + 1 - y2 ) = 2[ ( x2 + 2x + 1 ) - y2 ] = 2[ ( x + 1 )2 - y2 ] = 2( x - y + 1 )( x + y + 1 )
c) x3 - 2x2 + x - xy2 = x( x2 - 2x + 1 - y2 ) = x[ ( x2 - 2x + 1 ) - y2 ] = x[ ( x - 1 )2 - y2 ] = x( x - y - 1 )( x + y - 1 )
d) x( x - 2y ) + 3( 2y - x ) = x( x - 2y ) - 3( x - 2y ) = ( x - 2y )( x - 3 )
e) x4 + 4 = ( x4 + 4x2 + 4 ) - 4x2 = ( x2 + 2 )2 - ( 2x )2 = ( x2 - 2x + 2 )( x2 + 2x + 2 )
f) 5x2 - 7x - 6 = 5x2 - 10x + 3x - 6 = 5x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 5x + 3 )
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
I . Trắc Nghiệm 1B . 2D . 3C . 5A II . Tự luận 2,a,Ta có: A+(x22y-2xy22+5xy+1)=-2x22y+xy22-xy-1 ⇔⇔ A=(-2x22y+xy22-xy-1) - (x22y-2xy22+5xy+1) =-2x22y+xy22-xy-1 - x22y+2xy22-5xy-1 =(-2x22y - x22y) + (xy22+ 2xy22) + (-xy - 5xy ) + (-1 - 1) = -3x22y + 3xy22 - 6xy - 2 b, thay x=1,y=2 vào đa thức A Ta có A= -3x22y + 3xy22 - 6xy - 2 = -3 . 122 . 2 + 3 .1 . 222 - 6 . 1 . 2 -2 = -6 + 12 - 12 - 2 = -8 3,Sắp xếp f(x) =9-x55+4x-2x33+x22-7x44 =9-x55-7x44-2x33+x22+4x g(x) = x55-9+2x22+7x44+2x33-3x =-9+x55+7x44+2x33+2x22-3x b,f(x) + g(x)=(9-x55-7x44-2x33+x22+4x) + (-9+x55+7x44+2x33+2x22-3x) =9-x55-7x44-2x33+x22+4x-9+x55+7x44+2x33+2x22-3x =(9-9)+(-x55+x55)+(-7x44+7x44)+(-2x33+2x33)+(x22+2x22)+(4x-3x) = 3x22 + x g(x)-f(x)=(-9+x55+7x44+2x33+2x22-3x) - (9-x55-7x44-2x33+x22+4x) =-9+x55+7x44+2x33+2x22-3x-9+x55+7x44+2x 33-x22-4x =(-9-9)+(x55+x55)+(7x44+7x44)+(2x33+2x33)+(2x22-x22)+(3x-4x) = -18 + 2x55 + 14x44 + 4x33 + x22 - x
Bài 1:1)
f(x)=x+7x2−6x3+3x4+2x2+6x−2x4+1=7x+9x2+x4−6x3+1f(x)=x+7x2−6x3+3x4+2x2+6x−2x4+1=7x+9x2+x4−6x3+1
Sắp xếp: x4−6x3+9x2+7x+1x4−6x3+9x2+7x+1
2) bậc đa thức : 4
hệ số tự do : 1
hệ số cao nhất : 9
3)f(−1)=x4−6x3+9x2+7x+1=(−1)4−6.(−1)3+9.(−1)2+7.(−1)+1=1−(−6)+9+(−7)+1=10f(−1)=x4−6x3+9x2+7x+1=(−1)4−6.(−1)3+9.(−1)2+7.(−1)+1=1−(−6)+9+(−7)+1=10
mấy câu kia tương tự
Bài 2:
1.P=A+B=5x2−3xy+7y2+6x2−8xy+9y2=11x2−11xy+16y2P=A+B=5x2−3xy+7y2+6x2−8xy+9y2=11x2−11xy+16y2
Q=A−B=5x2−3xy+7y2−(6x2−8xy+9y2)=5x2−3xy+7y2−6x2+8xy−9y2=−x2+5xy−2y2Q=A−B=5x2−3xy+7y2−(6x2−8xy+9y2)=5x2−3xy+7y2−6x2+8xy−9y2=−x2+5xy−2y2
2.M=P−Q=11x2−11xy+16y2−(−x2+5xy−2y2)=11x2−11xy+16y2+x2−5xy+2y2=12x2−16xy+18y2M=P−Q=11x2−11xy+16y2−(−x2+5xy−2y2)=11x2−11xy+16y2+x2−5xy+2y2=12x2−16xy+18y2
Thay x=-1 và y=-2 có:
12x2−16xy+18y2=12.(−1)2−16.(−1).(−2)+18.(−2)2=5212x2−16xy+18y2=12.(−1)2−16.(−1).(−2)+18.(−2)2=52
3.T=M−N=12x2−16xy+18y2−3x2+16xy−14y2=9x2+4y2T=M−N=12x2−16xy+18y2−3x2+16xy−14y2=9x2+4y2
Ta có : 9x2 >0 và 4y2 >0 => T>0
=> T luôn nhận giá trị dương với mọi giá trị x, y
x3 + x + 2
\(=x^3+x^2-x^2-x+2x+2\)
\(=x^2\left(x+1\right)-x\left(x+1\right)+2\left(x+1\right)\)
\(\left(x+1\right)\left(x^2-x+2\right)\)
c) x3 + 32x - 4
\(=x^3-x^2+4x^2-4x+4x-4\)
\(=x^2\left(x-1\right)+4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+4x+4\right)\)
\(=\left(x-1\right)\left(x+2^2\right)\)
d)x3y3 + x2y2 + 4
\(=x^3y^3-4xy+x^2y^2-4xy+4\)
\(=xy\left(x^2y^2-4\right)+\left(xy+2\right)^2\)
\(=xy\left(xy-2\right)\left(xy+2\right)+\left(xy+2\right)^2\)
\(=\left(xy+2\right)\left(xy\left(xy-2\right)+xy+2\right)\)
\(=\left(xy+2\right)\left(x^2y^2-2xy+xy+2\right)\)
\(=\left(xy+2\right)\left(x^2y^2-xy+2\right)\)
e) x3 + 3x2y - 9xy2 + 5y3
\(=x^3-3x^2y+3xy^2-y^3+6x^2y-12xy^2+6y^3\)
\(=\left(x-y\right)^3\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3\left(x-y\right)^2=\left(x-y\right)^2\left(x-y-1\right)\)