K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

\(A=\left(x^2+x\right)^2-14\left(x^2+x\right)+24\)

Đặt \(x^2+x=t\), ta có:

\(A=t^2-14t+24\)

\(=t^2-2t-12t+24\)

\(=t\left(t-2\right)-12\left(t-2\right)\)

\(=\left(t-2\right)\left(t-12\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x-12\right)\)

\(B=\left(x^2+x\right)^2+4x^2+4x-12\)

\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)

Đặt \(x^2+x=t\), ta có:

\(B=t^2+4t-12\)

\(=t^2+6t-2t-12\)

\(=t\left(t+6\right)-2\left(t+6\right)\)

\(=\left(t+6\right)\left(t-2\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(x^2+5x+4=t\), ta có:

\(C=t\left(t+2\right)+1\)

\(=t^2+2t+1\)

\(=\left(t+1\right)^2\)

\(=\left(x^2+5x+4+1\right)^2\)

\(=\left(x^2+5x+5\right)^2\)

\(D=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(x^2+8x+7=t\), ta có:

\(D=t\left(t+8\right)+15\)

\(=t^2+8t+15\)

\(=t^2+3t+5t+15\)

\(=t\left(t+3\right)+5\left(t+3\right)\)

\(=\left(t+3\right)\left(t+5\right)\)

\(=\left(x^2+8x+7+3\right)\left(x^2+8x+7+5\right)\)

\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

\(F=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(x^2+x+1=t\), ta có:

\(F=t\left(t+1\right)-12\)

\(=t^2+t-12\)

\(=t^2+4t-3t-12\)

\(=t\left(t+4\right)-3\left(t+4\right)\)

\(=\left(t+4\right)\left(t-3\right)\)

\(=\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)

\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)

\(E=x^4+2x^3+5x^2+4x-12\)

\(=x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12\)

\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)

\(=\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)\)

\(=\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)

 

30 tháng 10 2016

siêng phết

22 tháng 8 2017

 bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

a) Ta có: \(\left(x^2+x\right)^2-14\left(x^2+x\right)+24\)(1)

Đặt \(a=x^2+x\)

(1)\(=a^2-14a+24\)

\(=a^2-12a-2a+24\)

\(=a\left(a-12\right)-2\left(a-12\right)\)

\(=\left(a-12\right)\left(a-2\right)\)

\(=\left(x^2+x-12\right)\left(x^2+x-2\right)\)

\(=\left(x^2+4x-3x-12\right)\left(x^2+2x-x-2\right)\)

\(=\left[x\left(x+4\right)-3\left(x+4\right)\right]\left[x\left(x+2\right)-\left(x+2\right)\right]\)

\(=\left(x+4\right)\left(x-3\right)\left(x+2\right)\left(x-1\right)\)

b) Ta có: \(\left(x^2+x\right)^2+4x^2+4x-12\)

\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)

\(=a^2+4a-12\)

\(=a^2+6a-2a-12\)

\(=a\left(a+6\right)-2\left(a+6\right)\)

\(=\left(a+6\right)\left(a-2\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+6\right)\left(x^2+2x-x-2\right)\)

\(=\left(x^2+x+6\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)

\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)

c) Ta có: \(x^4+2x^3+5x^2+4x-12\)

\(=x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12\)

\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)

\(=\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)\)

\(=\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)

d) Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)(2)

Đặt \(x^2+5x=b\)

(2)\(=\left(b+4\right)\left(b+6\right)+1\)

\(=b^2+10b+24+1\)

\(=b^2+10b+25\)

\(=\left(b+5\right)^2\)

\(=\left(x^2+5x+5\right)^2\)

e) Ta có: \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)(3)

Đặt \(c=x^2+8x\)

(3)\(=\left(c+7\right)\left(c+15\right)+15\)

\(=c^2+22c+105+15\)

\(=c^2+22c+120\)

\(=c^2+12c+10c+120\)

\(=c\left(c+12\right)+10\left(c+12\right)\)

\(=\left(c+12\right)\left(c+10\right)\)

\(=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

\(=\left(x^2+6x+2x+12\right)\left(x^2+8x+10\right)\)

\(=\left[x\left(x+6\right)+2\left(x+6\right)\right]\left(x^2+8x+10\right)\)

\(=\left(x+6\right)\left(x+2\right)\left(x^2+8x+10\right)\)

22 tháng 9 2020

a) x2 + x - 12 = x2 - 3x + 4x - 12 = x( x - 3 ) + 4( x - 3 ) = ( x - 3 )( x + 4 )

b) x2 - 4x - 5 = x2 + x - 5x - 5 = x( x + 1 ) - 5( x + 1 ) = ( x + 1 )( x - 5 )

c) x2 - 2x - 3 = x2 + x - 3x - 3 = x( x + 1 ) - 3( x + 1 ) = ( x + 1 )( x - 3 )

d) x2 - 2x - 8 = x2 + 2x - 4x - 8 = x( x + 2 ) - 4( x + 2 ) = ( x + 2 )( x - 4 )

e) x2 - 5x - 6 = x2 + x - 6x - 6 = x( x + 1 ) - 6( x + 1 ) = ( x + 1 )( x - 6 )

f) x2 - 6x + 8 = x- 2x - 4x + 8 = x( x - 2 ) - 4( x - 2 ) = ( x - 2 )( x - 4 )

g) x2 + 4x + 3 = x2 + x + 3x + 3 = x( x + 1 ) + 3( x + 1 ) = ( x + 1 )( x + 3 )

h) x2 - 2x - 15 = x2 + 3x - 5x - 15 = x( x + 3 ) - 5( x + 3 ) = ( x + 3 )( x - 5 )

i) x2 + 7x + 12 = x2 + 3x + 4x + 12 = x( x + 3 ) + 4( x + 3 ) = ( x + 3 )( x + 4 )

j) x2 - 5x - 14 = x2 + 2x - 7x - 14 = x( x + 2 ) - 7( x + 2 ) = ( x + 2 )( x - 7 )

25 tháng 9 2018

1 ) x3 - 2x2 + x

= x( x2 - 2x + 1 )

= x ( x-1)2

2) 4x3 - 25x 

= x ( 4x2 - 25)

= x( 2x-5) ( 2x +5)

25 tháng 9 2018

11)  \(x^2-y^2-4x+4\)

\(=\left(x^2-4x+4\right)-y^2\)

\(=\left(x-2\right)^2-y^2\)

\(=\left(x-y-2\right)\left(x+y-2\right)\)

13)  \(x^4+4=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-4x^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

11 tháng 4 2020

Bài 1:

a, x2-3xy-10y2

=x2+2xy-5xy-10y2

=(x2+2xy)-(5xy+10y2)

=x(x+2y)-5y(x+2y)

=(x+2y)(x-5y)

b, 2x2-5x-7

=2x2+2x-7x-7

=(2x2+2x)-(7x+7)

=2x(x+1)-7(x+1)

=(x+1)(2x-7)

Bài 2:

a, x(x-2)-x+2=0

<=>x(x-2)-(x-2)=0

<=>(x-2)(x-1)=0

<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

b, x2(x2+1)-x2-1=0

<=>x2(x2+1)-(x2+1)=0

<=>(x2+1)(x2-1)=0

<=>x2+1=0 hoặc x2-1=0

1, x2+1=0                                                          2, x2-1=0

<=>x2= -1(loại)                                                 <=>x2=1

                                                                         <=>x=1 hoặc x= -1

c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5

<=>5x(x-3)2-5(x-1)3+15(x2-4)=5

<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5

<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5

<=>30x-55=5

<=>30x=55+5

<=>30x=60

<=>x=2

d, (x+2)(3-4x)=x2+4x+4

<=>(x+2)(3-4x)=(x+2)2

<=>(x+2)(3-4x)-(x+2)2=0

<=>(x+2)(3-4x-x-2)=0

<=>(x+2)(1-5x)=0

<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)

Bài 3:

a, Sắp xếp lại:  x3+4x2-5x-20

Thực hiện phép chia ta được kết quả là x2-5 dư 0

b, Sau khi thực hiện phép chia ta được : 

Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0

=>a= -15