Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có : (x2 + x + 1)2 = [x2 + (x + 1)]2 = x4 + 2x2(x + 1) + (x + 1)2 Nên:
A = (x + 1)4 + (x2 + x + 1)2 = (x + 1)4 + x4 + 2x2(x + 1) + (x + 1)2 = [(x + 1)4 + (x + 1)2] + [x4 + 2x2(x + 1)]
= (x + 1)2(x2 + 2x + 2) + x2(x2 + 2x + 2) = (x2 + 2x + 2)(2x2 + 2x + 1).
b/ B = x10 + x5 + 1 Đặt \(|x^5|=t^2\) thì x10 = t4 Ta có B = t4 + t2 + 1 = (t2 + 1)2 - t2 = (t2 - t + 1)(t2 + t + 1)
Vậy : \(B=\left(x^5-\sqrt{|x|^5}+1\right)\left(x^5+\sqrt{|x|^5}+1\right).\)
c/ Nhân đa thức được: C = x2(x4 - 1)(x2 + 2) + 1 = (x6 - x2)(x2 + 2) + 1 = x6 (x2 + 2) - x2 (x2 + 2) + 1
C = x8 + 2x6 - x4 - 2x2 + 1 = x8 + 2x6 - 2x4 + x4 - 2x2 + 1 = (x4)2 + 2x4 (x2 - 1) + (x2 - 1)2
C = (x4 + x2 + 1)2 .
d/ D = 1 + ( a + b + c) + ab + bc + ca) + abc = (1 + a) + (abc + bc) + (b + ab) + (c + ca) = (1 + a) + bc(1 + a) + b(1 + a) + c(1 + a) =
= (1 + a)(1 + bc + b + c) = (1 + a)[(1 + b) + c(1 + b)] = (1 + a)(1 + b)(1 + c).
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
Đây là cách hiện đại :
\(x^4-2x^3+2x-1\)
\(=\left(x^4-1\right)-\left(2x^3-2x\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(\left(x^2+1\right)-2x\right)\)
\(=\left(x+1\right)\left(x-1\right)\left(\left(x^2+1\right)-2x\right)\)
a,=\(x^4-x^3-x^3+x^2-x^2+x+x-1\)
cu hai so nhom 1 nhom roi dat thua so chung la xong
b,x^4+x^3+x^3+x^2+x^2+x+x+1
cu hai so lai nhom 1 nhom va dat thua so chung
a)\(x^4+x^3+x+1=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)=\left(x+1\right)^2\left(x^2-x+1\right)\)
b)\(x^4-x^3-x^2+1=\left(x^4-x^3\right)-\left(x^2-1\right)=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^3-x-1\right)\)
c)\(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(xy-1\right)\left(x+y\right)\)
\(b.x^4+4x^2-5=x^4-x^2+5x^2-5\)
\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)
\(c.x^3-19x-30=x^3-25x+6x-30\)
\(=x\left(x-5\right)\left(x+5\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)
1)a2(b-c)+b2(c-a)+c2(a-b)
=a2b-a2c+b2c-b2a+c2a-c2b
=(a2b-c2b)+(b2c-b2a)+(c2a-a2c)
=b.(a2-c2)-b2.(a-c)-ac.(a-c)
=b.(a-c)(a+c)-b2(a-c)-ac(a-c)
=(a-c)(ab+bc-b2-ac)
=(a-c)[(ab-ac)+(bc-b2)]
=(a-c)[a.(b-c)-b.(b-c)]
=(a-c)(b-c)(a-b)
\(a,x^4+64=\left(x^4+16x^2+64\right)\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+8\right).\left(x^2+4x+8\right)\)
\(b,x^5+x+1\)
\(=\left(x^2+x+1\right).\left(x^3-x^2+1\right)\)
...
\(b,\)\(x^{10}+x^5+1\)
\(=x^{10}-x^7+x^7+x^5+x^3-x^3+1\)
\(=x^7\left(x^3-1\right)+x^3\left(x^4+x^2+1\right)-\left(x^3-1\right)\)
\(=x^7\left(x-1\right)\left(x^2+x+1\right)+x^3\left(x^4+2x^2+1-x^2\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^7\left(x-1\right)\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)\left(x^2-x+1\right)\)\(-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)
\(d,\)\(1+\left(a+b+c\right)+\left(ab+bc+ca\right)+abc\)
\(=1+a+b+c+ab+bc+ca+abc\)
\(=\left(ab+b\right)+\left(abc+bc\right)+\left(ac+c\right)+\left(a+1\right)\)
\(=b\left(a+1\right)+bc\left(a+1\right)+c\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(b+bc+c+1\right)\)
\(=\left(a+1\right)\left[b\left(c+1\right)+\left(c+1\right)\right]\)
\(=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)