Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= \(^{x^3+3x^2y-4xy^2-12y^3=x^2\left(x+3y\right)-4y^2\left(x+3y\right)=\left(x+3y\right)\left(x^2-4y^2\right)}\)
a) xy – 3x + 2y – 6
= (xy - 3x) + (2y - 6)
= x(y - 3) + 2(y - 3)
= (y - 3)(x + 2)
b) x2y + 4xy + 4y – y3
= y(x2 + 4x + 4 - y2)
= y[(x2 + 4x + 4) - y2]
= y[(x + 2)2 - y2]
= y(x + 2 + y)(x + 2 - y)
c) x2 + y2 + xz + yz + 2xy
= (x2 + 2xy + y2) + (xz + yz)
= (x + y)2 + z(x + y)
= (x + y)(x + y + z)
d) x3 + 3x2 – 3x – 1
= (x3 - 1) + (3x2 - 3x)
= (x - 1)(x2 + x + z) + 3x(x - 1)
= (x - 1)(x2 + 4x + 1)
a )
\(xy-3x+2y-6\)
\(=\left(xy+2y\right)-3x-6\)
\(=y\left(x+2\right)-3\left(x+2\right)\)
\(=\left(y-3\right)\left(x+2\right)\)
b )
\(x^2y+4xy+4y-y^3\)
\(=y\left(x^2+4x+4-y^2\right)\)
\(=y\left[\left(x+2\right)^2-y^2\right]\)
\(=y\left(x+2-y\right)\left(x+2+y\right)\)
c )
\(x^2+y^2+xz+yz+2xy\)
\(=\left(x+y\right)^2+z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y+z\right)\)
\(x^3+8y^3+2xy^2+x^2y\)
\(=x^3+2x^2y-x^2y-2xy^2+4xy^2+8y^3\)
\(=x^2\left(x+2y\right)-xy\left(x+2y\right)+4y^2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x^2-xy+4y^2\right)\)
a) \(\left(x+y\right)^3-x^3-y^3\)
\(=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-x^2+xy-y^2\right]\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)
\(=3xy\left(x+y\right)\)
b) \(x^2+y^2+2xy+yz+xz\)
\(=\left(x^2+2xy+y^2\right)+\left(yz+xz\right)\)
\(=\left(x+y\right)^2+z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y+z\right)\)
c) \(x^2-10xy-1+25y^2\)
\(=\left(x^2-10xy+25y^2\right)-1\)
\(=\left(x-5y\right)^2-1\)
\(=\left(x-5y-1\right)\left(x-5y+1\right)\)
d) \(ax^2-ax+bx^2-bx+a+b\)
\(=(ax^2+bx^2)-(ax+bx)+(a+b)\)
\(=x^2(a+b)-x(a+b)+(a+b)\)
\(=(a+b)(x^2-x+1)\)
e)\(x^2-2y+3xz+x-2y+3z\)
\(=(x^2+x)-(2xy+2y)+(3xz+3z)\)
\(=x(x+1)-2y(x-1)+3z(x+1)\)
\(=(x+1)(x-2y+3z)\)
f) \(xyz-xy-yz-xz+x+y+z-1\)
\(=(xyz-xy)-(yz-y)-(xz-x)+(z-1)\)
\(=xy(z-1)-y(z-1)-x(z-1)+(z-1)\)
\(=(z-1)(xy-y-x+1)\)
\(=(z-1)[y(x-1)-(x-1)]\)
\(=(z-1)(x-1)(y-1)\)
_Học tốt_
a, \(=12x^5+9x^3y^2-6x^2y^3-20x^4y-15x^2y^3-10xy^4-24x^3y^2-18xy^4+12y^5\)
(tự rút gọn cái :P)
b, \(8x^3+4x^2y-2xy^2-y^3\)
\(=4x^2\left(2x+y\right)-y^2\left(2x+y\right)=\left(2x+y\right)^2\left(2x-y\right)\)
\(4x^2y^2-4x^2-4xy-y^2=4x^2y^2-\left(2x+y\right)^2\)
\(=\left(2x+y+2xy\right)\left(2xy-2x+y\right)\)
Mấy cái còn lại nhân tung ra là được mà :))))
Câu 2 nha
\(a,x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(c,x^2-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
a) \(12x^5y+24x^4y^2+12x^3y^3\)
\(=12x^3y\left(x^2+2xy+y^2\right)\)
\(=12x^3y\left(x+y\right)^2\)
b) \(x^2-2xy-4+y^2\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)
g) \(12xy-12xz+3x^2y-3x^2z\)
\(=12x\left(y-z\right)+3x^2\left(y-z\right)\)
\(=3x\left(4+x\right)\left(y-z\right)\)
e) \(16x^2-9\left(x^2+2xy+y^2\right)\)
\(=\left(4x\right)^2-\left[3\left(x+y\right)\right]^2\)
\(=\left(4x-3\left(x+y\right)\right)\left(4x+3\left(x+y\right)\right)\)
\(=\left(x+y\right)\left(7x+y\right)\)
d) làm tương tự như phần g chỉ khác là phải nhóm( nhóm xen kẽ), phần f cũng vậy
\(x^2-2xy+y^2-xz+yz\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c) \(x^2+y^2+xz+yz+2xy\)
\(=\left(x+y\right)^2+z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y+z\right)\)
b) \(x^3+3x^2-3x-1\)
\(=\left(x^3-1\right)+3x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+4x+1\right)\)