K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2015

Sau khi rút gọn ta có:
a2+b2+c2+abc+2≥ab+bc+ac+a+b+c
hay
2(a2+b2+c2)+2abc+4≥(ab+bc+ac+a+b+c).2
Áp dụng kết quả sau
a2+b2+c2+2abc+1≥2(ab+bc+ac) (1)
cần chứng minh 
a2+b2+c2+3≥2a+2b+2c (2)
hay (a−1)2+(b−1)2+(c−1)2≥0 (đúng)
dấu = xảy ra khi a=b=c=1
Từ (1) và (2) ta có đpcm

Theo nguyên lý Dirichlet, ta thấy rằng trong ba số a,b,c sẽ có hai số hoặc cùng ≥1 hoặc cùng ≤1. Giả sử hai số đó là a,b khi đó:

(a−1)(b−1)≥0.


Từ đây, bằng cách sử dụng hằng đẳng thức:

a2+b2+c2+2abc+1−2(ab+bc+ca)=(a−b)2+(c−1)2+2c(a−1)(b−1)≥0


Ta thu được ngay bất đẳng thức (1), phép chứng minh hoàn tất.

Lời giải 2: Ta sẽ sử dụng phương pháp dồn biến để chứng minh bài toán. Giả sử c là số bé nhất và đặt:

f(a,b,c)=a2+b2+c2+2abc+1−2(ab+bc+ca)


Ta có:

f(a,b,c)−f(ab−−√,ab−−√,c)=(a√−b√)2(a+b+2ab−−√−2c)≥0


Do đó f(a,b,c)≥f(ab−−√,ab−−√,c), vậy ta chỉ cần chứng minh f(ab−−√,ab−−√,c)≥0.
Thật vậy, nếu đặt t=ab−−√ thì ta có:

f(t,t,c)=2t2+c2+2t2c−2(t2+2tc)+1=(c−1)2+2c(t−1)2≥0

16 tháng 10 2015

Nguyễn Duy Bằng bá đạo thật @@

24 tháng 3 2020

hhgbn

xin chào

19 tháng 9 2018

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+xy+yz+zx\right)\)