Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4x^2-20x+25-36y^2\)
\(=\left(4x^2-20x+25\right)-36y^2\)
\(=\left(\left(2x\right)^2-2.2x.5+5^2\right)-\left(6y\right)^2\)
\(=\left(2x-5\right)^2-\left(6y\right)^2\)
\(=\left(2x-5-6y\right)\left(2x-5+6y\right)\)
d) \(x^4+6x^3+9x^2-16\)
\(=x^2\left(x^2+6x+9\right)-16\)
\(=x^2\left(x^2+2x3+3^2\right)-4^2\)
\(=x^2\left(x+3\right)^2-4^2\)
\(=x^2\left(x+3-4\right)\left(x+3+4\right)\)
a) \(3x^2-5x-8\)
\(=3x^2+3x-8x-8\)
\(=3x\left(x+1\right)-8\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-8\right)\)
b) \(x^4+6x^3+9x^2-16\)
\(=\left(x^2+3x\right)^2-16\)
\(=\left(x^2+3x-4\right)\left(x^2+3x+4\right)\)
\(=\left(x^2-x+4x-4\right)\left(x^2+3x+4\right)\)
\(=\left[x\left(x-1\right)+4\left(x-1\right)\right]\left(x^2+3x+4\right)\)
\(=\left(x-1\right)\left(x+4\right)\left(x^2+3x+4\right)\)
Ta có:
a) 6x2y - 3y2 - 2x2 + y = (6x2y - 2x2) - (3y2 - y) = 2x2(3y - 1) - y(3y - 1) = (2x2 - y)(3y - 1)
b) 2x2 + x - 4xy - 2y + 2x + 1 = (x2 + x) - (4xy + 2y) + (x2 + 2x + 1) = x(x + 1) - 2y(2x + 1) + (x + 1)2
= (x + x + 1)(x + 1) - 2y(2x + 1) = (2x + 1)(x + 1) - 2y(2x + 1) = (2x + 1)(x + 1 - 2y)
c) 16x2y - 4xy2 - 4x3 + x2y = 4xy(4x - y) - x2(4x - y) = (4xy - x2)(4x - y)
d) 4x2 - 20x + 25 - 36y2 = (2x - 5)2 - (6y)2 = (2x - 5 - 6y)(2x - 5 + 6y)
e) x2 - 4y2 + 6x - 4y + 8 = (x2 + 6x + 9) - (4y2 + 4y + 1) = (x + 3)2 - (2y + 1)2 = (x + 3 - 2y - 1)(x + 3 + 2y + 1) = (x + 2 - 2y)(x + 4 + 2y)
g) Ta có : x10 + x5 + 1
= (x10 - x) + (x5 - x2) + (x2 + x + 1)
= x(x9 - 1) + x2(x3 - 1) + (x2 + x + 1)
= x(x3 - 1)(x6 + x3 + 1) + x2(x3 - 1) + (x2 + x + 1)
= (x7 + x4 + x)(x - 1)(x2 + x + 1) + x2(x - 1)(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)(x8 - x7 + x 5 - x4 + x2 - x + x4 + x3 + x2 + 1)
= (x2 + x + 1)(x8 - x7 + x5 + x3 - x + 1)
h) TT trên (dài dòng ktl)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
a) \(2x\left(x-3\right)^2+5x\left(3-x\right)\)
\(=2x\left(x-3\right)^2-5x\left(x-3\right)\)
\(=\left(x-3\right)\left[2x\left(x-3\right)-5x\right]\)
\(=\left(x-3\right)\left(2x^2-6x-5x\right)\)
\(=\left(x-3\right)\left(2x^2-11x\right)\)
\(=x\left(x-3\right)\left(2x-11\right)\)
b) \(\left(x+3\right)^2-4\left(y^2-2y+1\right)\)
\(=\left(x+3\right)^2-2^2\left(y-1\right)^2\)
\(=\left(x+3\right)^2-\left[2\left(y-1\right)\right]^2\)
\(=\left[\left(x+3\right)-2\left(y-1\right)\right]\left[\left(x+3\right)+2\left(y-1\right)\right]\)
\(=\left(x+3-2y+2\right)\left(x+3+2y-2\right)\)
\(=\left(x-2y+5\right)\left(x+2y+1\right)\)
a) \(2x.\left(x-3\right)^2+5x.\left(-x+3\right)=2x.\left(x-3\right)^2-5x.\left(x-3\right)\)
\(=\left(x-3\right).\left(2x^2-11x\right)=\left(x-3\right).x.\left(2x-11\right)\)
b) \(\left(x+3\right)^2-4.\left(y^2-2y+1\right)=\left(x+3\right)^2-2^2.\left(y-1\right)^2\)
\(=\left(x+3\right)^2-\left[2.\left(y-1\right)\right]^2=\left(x-2y+1\right).\left(x+2y+5\right)\)
a) \(x^3+6x^2+12x+8\)
\(=\left(x+2\right)^3\)
b) \(x^3-3x^2+3x-1\)
\(=\left(x-1\right)^3\)
c) \(1-9x+27x^2-27x^3\)
\(=-\left(27x^3-27x^2+9x-1\right)\)
\(=-\left(3x-1\right)^3\)
Bài làm
a) 4x2 - 6x
= 2x( 2x - 3 )
b) 9x4y3 + 3x2y4
= 3x2y3( 3x2 + y )
c) x3 - 2x2 + 5x
= x( x2 - 2x + 5 )
d) 3x( x - 1 ) + 5( x - 1 )
= ( x - 1 )( 3x + 5 )
e) 2x2( x + 1 ) + 4( x + 1 )
= ( x + 1 )( 2x2 + 4 )
= ( x + 1 )2( x2 + 2 )
= 2( x + 1 )( x2 + 2 )
f) -3x - 6xy + 9xz
= -( 3x + 6xy - 9xz )
= -3x( 1 + 2y - 3z )
# Học tốt #
\(x^4+1\)
\(=x^4+2x^2+1-2x^2\)
\(=\left(x^2+1\right)^2-2x^2\)
\(=\left(x^2+1\right)^2-\left(\sqrt{2}x\right)^2\)
\(=\left(x^2+1-\sqrt{2}x\right)\left(x^2+1+\sqrt{2}x\right)\)
a) 4x2 - 20x + 25 - 36y2
= (2x - 5)2 - 36y2
= (2x - 5 - 6y)(2x - 5 + 6y)
b) x3 + x2 - 2x - 8
= (x3 - 8) + (x2 - 2x)
= (x - 2)(x2 + 2x + 4) + x(x - 2)
= (x - 2)(x2 + 2x + 4 + x)
= (x - 2)(x2 + 3x + 4)
d) x4 + 6x3 + 9x2 - 16
= x2(x2 + 6x + 9) - 16
= x2(x + 3)2 - 16
= (x2 + 3x)2 - 16
= (x2 + 3x - 4)(x2 + 3x + 4)
= (x2 + 4x - x - 4)(x2 + 3x + 4)
= [x(x + 4) - (x + 4)](x2 + 3x + 4)
= (x - 1)(x + 4)(x2 + 3x + 4)