Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3 - 1 + 5x2 - 5 + 3x - 3
= x3 + 5x2 + 3x - 9
= x3 + 6x2 - x2 + 9x - 6x - 9
= ( x3 + 6x2 + 9x ) - ( x2 + 6x + 9 )
= x( x2 + 6x + 9 ) - ( x2 + 6x + 9 )
= ( x2 + 6x + 9 )( x - 1 )
= ( x + 3 )2( x - 1 )
b) a5 + a4 + a3 + a2 + a + 1
= ( a5 + a4 + a3 ) + ( a2 + a + 1 )
= a3( a2 + a + 1 ) + 1( a2 + a + 1 )
= ( a2 + a + 1 )( a3 + 1 )
= ( a2 + a + 1 )( a + 1 )( a2 - a + 1 )
c) x3 - 3x2 + 3x - 1 - y3
= ( x3 - 3x2 + 3x - 1 ) - y3
= ( x - 1 )3 - y3
= ( x - 1 - y )[ ( x - 1 )2 + ( x - 1 )y + y2 ]
= ( x - 1 - y )( x2 - 2x + 1 + xy - y + y2 )
d) 5x3 - 3x2y - 45xy2 + 27y3
= ( 5x3 - 45xy2 ) - ( 3x2y - 27y3 )
= 5x( x2 - 9y2 ) - 3y( x2 - 9y2 )
= ( 5x - 3y )( x2 - 9y2 )
= ( 5x - 3y )[ x2 - ( 3y )2 ]
= ( 5x - 3y )( x - 3y )( x + 3y )
Bài 1
\(x^5+x^4+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^5+x^4+x^3\right)+\left(-x^3-x^2-x\right)+\left(x^2+x+1\right)\)
\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)
Bài 2
Ta có: \(\left(ax+b\right)\left(x^2+cx+1\right)=ax^3+bx^2+acx^2+bcx+ax+b\)
\(=ax^3+\left(b+ac\right)x^2+\left(bc+a\right)x+b=x^3-3x-2\)
\(\Rightarrow a=1\)
\(\Rightarrow b+ac=0\)
\(\Rightarrow bc+a=-3\)
\(\Rightarrow b=-2\)
Thay giá trị của \(a=1;b=-2\)vào \(b+ac=0\)ta được
\(\Leftrightarrow-2+c=0\Rightarrow c=2\)
Vậy \(a=1;b=-2;c=2\)
Bài 3
Ta có \(\left(x^4-3x^3+2x^2-5x\right)\div\left(x^2-3x+1\right)=x^2+1\left(dư-2x+1\right)\)
\(\Rightarrow b=2x-1\)
Bài 4 (cũng làm tương tự như bài 3 nhé )
Bài 5(bài nãy dễ nên bạn tự làm đi nhé)
Bài 6
\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2=0\)
\(\Leftrightarrow a^2-2ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\)\(\Rightarrow a-b=0\Rightarrow a=b\)
Bài 7
\(a^2+b^2+c^2=ab+ac+bc\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
\(\Rightarrow a-b=0\Rightarrow a=b\)
\(\Rightarrow b-c=0\Rightarrow b=c\)
\(\Rightarrow a-c=0\Rightarrow a=c\)
Vậy \(a=b=c\)
a) x ( x +1 ) 2 + ( x - 5 ) - 5( x +1 )2
=( x +1 )2.(x-5)2
=( (x +1)+(x-5)).((x +1)-(x-5))
a) x ( x +1 ) 2 + ( x - 5 ) - 5( x +1 )2
= ( x + 1 )2 ( x - 5 ) + ( x - 5 )
= ( x - 5 ) ( x2 + 2x + 1 +1 )
= ( x - 5 ) ( x2 + 2x + 2 )
b) 3x2 - 12y2
= 3 ( x2 - 4y2 )
= 3 ( x -2y ) (x + 2y )
c) x3 + 3x2 + 3x +1 - 27z3
= ( x + 1 )3 - (3z )3
= ( x + 1 - 3z ) [ ( x + 1 )2 + 3z ( x + 1 ) +9z2 ]
= ( x + 1 - 3z) [( x + 1 ) 2 + 3xz + 3z + 9z2 ]