K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 8 2018

a)

\(x^4y^4+4=(x^2y^2)^2+2^2+2.(x^2y^2).2-4x^2y^2\)

\(=(x^2y^2+2)^2-(2xy)^2\)

\(=(x^2y^2+2-2xy)(x^2y^2+2+2xy)\)

b)

\(x^4y^4+64=(x^2y^2)^2+8^2+2.x^2y^2.8-16x^2y^2\)

\(=(x^2y^2+8)^2-(4xy)^2\)

\(=(x^2y^2+8-4xy)(x^2y^2+8+4xy)\)

AH
Akai Haruma
Giáo viên
9 tháng 8 2018

c)

\(4x^4y^4+1=(2x^2y^2)^2+1^2+2.2x^2y^2.1-4x^2y^2\)

\(=(2x^2y^2+1)^2-(2xy)^2\)

\(=(2x^2y^2+1-2xy)(2x^2y^2+1+2xy)\)

d)

\(32x^4+1\) (biểu thức không thể phân tích thành nhân tử)

e)

\(x^4+4y^4=(x^2)^2+(2y^2)^2+2x^2.2y^2-4x^2y^2\)

\(=(x^2+2y^2)^2-(2xy)^2\)

\(=(x^2+2y^2-2xy)(x^2+2y^2+2xy)\)

x^3y^4 + 64 = (x^(27y^4)+4)(x^(54y^4)-4x^(27y^4)+16)

4x^4y^4 + 1 = (2x^(128y^4)-2x^(64y^4)+1)(2x^(128y^4)+2x^(64y^4)+1)

32x^4 + 11 = ko biết 

x^4 + 4y^4 = (2y^2-2xy+x^2)(2y^2+2xy+x^2)

x^7 + x^2 + 11 = ko biết

x^8 + x + 1 = (x^2+x+1)(x^6-x^5+x^3-x^2+1)

x^8 + x^7 + 11 = ko biết 

21 tháng 8 2021

sai ak

8 tháng 8 2015

a)x4-4(x2+5)-25=x4-4x2-45=(x4-9x2)+(5x2-45)=x2(x2-9)+5(x2-9)=(x2-9)(x2+5)=(x-3)(x+3)(x2+5)

b)a2-b2-2a+1=(a2-2a+1)-b2=(a-1)2-b2=(a-b-1)(a+b-1)

c)x2-2x-4y2-4y=(x2-2x+1)-(4y2+4y+1)=(x-1)2-(2y+1)2=(x-1-2y-1)(x-1+2y+1)=(x-2y-2)(x+2y)

d)x2+4x-y2+4=(x2+4x+4)-y2=(x+2)2-y2=(x-y+2)(x+y+2)

\(a,x^4+4=x^4+4x^2+4-2x^4=\left(x^2+2\right)^2-4x^2\)

\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)

\(b,4x^8+1=4x^8+4x^4+1-4x^4\)

\(=\left(2x^4+1\right)^2-4x^4=\left(2x^4-2x^2+1\right)\left(2x^4+2x^2+1\right)\)

\(c,4x^4+y^4=4x^4+4x^2y^2+y^4-4x^2y^2\)

\(=\left(2x^2+y^2\right)^2-4x^2y^2\)

\(=\left(2x^2+y^2-2xy\right)\left(2x^2+y^2+2xy\right)\)

16 tháng 8 2015

a/ \(=64y^4+32xy^3+8y^2x^2-32xy^3-16x^2y^2-4x^3y+8x^2y^2+4x^3y+x^4\)

\(=8y^2\left(8y^2+4xy+x^2\right)-4xy\left(8y^2+4xy+x^2\right)+x^2\left(8y^2+4xy+x^2\right)\)

\(=\left(8y^2-4xy+x^2\right)\left(8y^2+4xy+x^2\right)\)

b/ \(=y^4+2xy^3+2x^2y^2-2xy^3-4x^2y^2-4x^3y+2x^2y^2+4x^3y+4x^4\)

\(=y^2\left(y^2+2xy+2x^2\right)-2xy\left(y^2+2xy+2x^2\right)+2x^2\left(y^2+2xy+2x^2\right)\)

\(=\left(y^2-2xy+2x^2\right)\left(y^2+2xy+2x^2\right)\)

c/ \(=x^4+5x^3+7x^2+5x^3+25x^2+35x+3x^2+15x+21\)

\(=x^2\left(x^2+5x+7\right)+5x\left(x^2+5x+7\right)+3\left(x^2+5x+7\right)\)

\(=\left(x^2+5x+3\right)\left(x^2+5x+7\right)\)

d/ \(=x^4+x^3+x^2-x^3-x^2-x+x^2+x+1\)

\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

19 tháng 7 2016

a)\(x^4+64=x^4+16x^2+64-16x^2\)

\(=\left(x^2\right)^2+2.x^2.8+8^2-\left(4x\right)^2\)

\(=\left(x^2+8\right)^2-\left(4x\right)^2\)

\(=\left(x^2+8-4x\right)\left(x^2+8+4x\right)\)

b)\(4x^4+81=4x^4+36x^2+81-36x^2\)

\(=\left(2x^2\right)^2+2.2x^2.9+9^2-\left(6x\right)^2\)

\(=\left(2x^2+9\right)^2-\left(6x\right)^2\)

\(=\left(2x^2+9-6x\right)\left(2x^2+9+6x\right)\)

c)\(x^4y^4+64=x^4y^4+16\left(xy\right)^2+64-16\left(xy\right)^2\)

\(=\left[\left(xy\right)^2\right]^2+2.\left(xy\right)^2.8+8^2-\left(8xy\right)^2\)

\(=\left[\left(xy\right)^2+8\right]^2-\left(8xy\right)^2\)

\(=\left[\left(xy\right)^2+8-8xy\right]\left[\left(xy\right)^2+8+8xy\right]\)