K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

b) x3y3 + x2y2+ 4 = x3y3- 4xy + (xy)2- 2xy.2 + 22 = xy [ (xy)^2 - 2^2 ] + ( xy - 2)^2 

= xy(xy-2)(xy+2)+ (xy-2)^2 

= (xy-2) [ xy(xy+2) + ( xy-2) ]

= (xy-2) [ (xy)2 + 2xy + xy - 3 ]

= ( xy - 3)  [ (xy)2 +  3xy - 3]

2 tháng 8 2017

3) (chưa bik làm) 

 4) x4 +x3 + 6x2 +5x +5

 = x4 +x3 + x2 + 5x+ 5x +5

= x2( x2+x+ 1 ) + 5( x2+x+ 1 )

= ( x2+ 5 ) (  x2+x+ 1 ) 

5) x4 - 2x3 - 12x+12x + 36

= x4 - 2x3 - 6x2 - 6x2 + 12x + 36=

x2 ( x2 - 2x - 6) - 6 ( x2 - 2x - 6) 

= (x^2 - 6)  ( x2 - 2x - 6) 6) x8y + x4y + 1 = \(\left[\left(xy\right)^4\right]^2+2x^4y^4+1-x^4y^4\)=\(\left[\left(xy\right)^4+1\right]^2-\left[\left(xy\right)^2\right]^2\)

\(\left(x^4y^4+1-x^2y^2\right)\left(x^4y^4+1+x^2y^2\right)\)

( mik ko bik đúng hay sai đâu nha) mik thấy nó thành nhân tử thì mik tách thôi

11 tháng 8 2019

\(\text{a) }x^3y^3+x^2y^2+4\)

\(=x^3y^3+2x^2y^2-x^2y^2+4\)

\(=\left(x^3y^3+2x^2y^2\right)-\left(x^2y^2-4\right)\)

\(=x^2y^2\left(xy+2\right)-\left(xy+2\right)\left(xy-2\right)\)

\(=\left(xy+2\right)\left(x^2y^2-xy+2\right)\)

11 tháng 8 2019

\( {c)}\)\(x^4+x^3+6x^2+5x+5\)

\(=\left(x^4+x^3+x^2\right)+\left(5x^2+5x+5\right)\)

\(=x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2+5\right)\)

\({d)}\)\(x^4-2x^3-12x^2+12x+36\)

\(=\left(x^4-2x^3-6x^2\right)-\left(6x^2-12x-36\right)\)

\(=x^2\left(x^2-2x-6\right)-6\left(x^2-2x-6\right)\)

\(=\left(x^2-2x-6\right)\left(x^2-6\right)\)

Câu b sai đề thì phải ah

29 tháng 7 2017

a)\(x^3y^3+x^2y^2+4\)

\(=x^3y^3-x^2y^2+2xy+2x^2y^2-2xy+4\)

\(=xy\left(x^2y^2-xy+2\right)+2\left(x^2y^2-xy+2\right)\)

\(=\left(xy+2\right)\left(x^2y^2-xy+2\right)\)

b)\(x^4+x^3+6x^2+5x+5\)

\(=x^4+x^2+x^2+5x^2+5x+5\)

\(=x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)\)

\(=\left(x^2+5\right)\left(x^2+x+1\right)\)

c)\(x^4-2x^3-12x^2+12x+36\)

\(=x^4-2x^3-6x^2-6x^2+12x+36\)

\(=x^2\left(x^2-2x-6\right)-6\left(x^2-2x-6\right)\)

\(=\left(x^2-6\right)\left(x^2-2x-6\right)\)

d)\(x^8y^8+x^4y^4+1\)

\(=x^8y^8+2x^4y^4+1-x^4y^4\)

\(=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2\)

\(=\left(x^4y^4+1+x^2y^2\right)\left(x^4y^4+1-x^2y^2\right)\)

\(=\left(x^4y^4+2x^2y^2+1-x^2y^2\right)\left(x^4y^4+1-x^2y^2\right)\)

\(=\left(\left(x^2y^2+1\right)^2-\left(xy\right)^2\right)\left(x^4y^4+1-x^2y^2\right)\)

\(=\left(x^2y^2+1-xy\right)\left(x^2y^2+1+xy\right)\left(x^4y^4+1-x^2y^2\right)\)

22 tháng 9 2019

bạn lm pb = cách nhẩm nghiệm đc không

12 tháng 7 2019

a,\(xy+3x-7y-21\)

\(=x\left(y+3\right)-7\left(y+3\right)\)

\(=\left(y+3\right)\left(x-7\right)\)

12 tháng 7 2019

\(b,2xy-15-6x+5y\)

\(=\left(2xy-6x\right)+\left(-15+5y\right)\)

\(=2x\left(y-3\right)-5\left(3-y\right)\)

\(=2x\left(y-3\right)+5\left(y-3\right)\)

\(=\left(y-3\right)\left(2x+5\right)\)

1 tháng 8 2018

\(a.x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\) \(b.5x^3-5x^2y-10x^2+10xy=5x^2\left(x-y\right)-10x\left(x-y\right)=5x\left(x-y\right)\left(x-2\right)\) \(c.x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-4y^2\right]=\left(x-1-2y\right)\left(x-1+2y\right)\) \(d.\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)

Đặt : \(x^2+7x+11=t\) , ta có :

\(\left(t+1\right)\left(t-1\right)-8=t^2-1-8=\left(t-3\right)\left(t+3\right)=\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)

\(e.2x^2-5x-7=2x^2+2x-7x-7=2x\left(x+1\right)-7\left(x+1\right)=\left(x+1\right)\left(2x-7\right)\) \(f.x^2-12x+36=\left(x-6\right)^2=\left(x-6\right)\left(x-6\right)\)

\(g.x^4-5x^2+4=x^4-x^2-4x^2+4=x^2\left(x^2-1\right)-4\left(x^2-1\right)=\left(x^2-1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-1\right)\left(x+2\right)\left(x-2\right)\) \(g.a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

31 tháng 10 2020

a) \(6x^3-12x^2y^2+6xy^3=6x.\left(x^2-2xy^2+y^3\right)\)

b) \(\left(x^2+4\right)^2-16=\left(x^2+4-4\right)\left(x^2+4+4\right)=x^2\left(x^2+8\right)\)

c) \(5x^2-5xy-10x+10y=\left(5x^2-5xy\right)-\left(10x-10y\right)=5x\left(x-y\right)-10\left(x-y\right)\)

\(=\left(x-y\right)\left(5x-10\right)=5\left(x-y\right)\left(x-2\right)\)

d) \(a^3-3a+3b-b^3=\left(a^3-b^3\right)-\left(3a-3b\right)=\left(a-b\right)\left(a^2+ab+b^2\right)-3.\left(a-b\right)\)

\(=\left(a-b\right)\left(x^2+ab+b^2-3\right)\)

e) \(x^2-2x-y^2+1=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-1-y\right)\left(x-1+y\right)\)

f) \(x^2-x-2=x^2+x-2x-2=\left(x^2+x\right)-\left(2x+2\right)=x\left(x+1\right)-2\left(x+1\right)\)

\(=\left(x+1\right)\left(x-2\right)\)

g) \(x^4-5x^2+4=x^4-4x^2+4-x^2=\left(x^4-4x^2+4\right)-x^2=\left(x^2-2\right)^2-x^2\)

\(=\left(x^2-2-x\right)\left(x^2-2+x\right)\)

j) \(x^3-x^3-2x^2-x=-2x^2-x=-\left(2x^2+x\right)=-x\left(2x+1\right)\)

k) \(\left(a^3-27\right)-\left(3-a\right)\left(6a+9\right)=\left(a-3\right).\left(a^2+3a+9\right)+\left(a-3\right)\left(6a+9\right)\)

\(\left(a-3\right)\left(a^2+3a+9+6a+9\right)=\left(a-3\right)\left(a^2+9a+18\right)\)

h) \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)

\(=x^2y-x^2z+y^2z-y^2x+z^2x-z^2y\)

\(=\left(x^2y-y^2x\right)-\left(x^2z-y^2z\right)+\left(z^2x-z^2y\right)\)

\(=xy\left(x-y\right)-z\left(x^2-y^2\right)+z^2\left(x-y\right)\)

\(=xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\)

\(=\left(x-y\right)\left(xy-zx-zy+z^2\right)\)

\(=\left(x-y\right)\left[\left(xy-zx\right)-\left(zy-z^2\right)\right]\)

\(=\left(x-y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]\)

\(\left(x-y\right)\left(y-z\right)\left(x-z\right)\)