Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-10x+9\)
\(=x^2-9x-x+9\)
\(=x\left(x-9\right)-\left(x-9\right)\)
\(=\left(x-1\right)\left(x-9\right)\)
b) \(3x^2-10xy+3y^2\)
\(=3x^2-9xy-xy+3y^2\)
\(=3x\left(x-3y\right)-y\left(x-3y\right)\)
\(=\left(3x-y\right)\left(x-3y\right)\)
a) \(=x^2+2xy+y^2-x^2+y^2=2xy+2y^2=2y\left(x+y\right)\)
b) \(=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)
c) \(=3\left[\left(x^2+2xy+y^2\right)-z^2\right]=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)
d) \(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)
e) \(=\left(x-3\right)\left(x^2+3x+9\right)-2x\left(x-3\right)=\left(x-3\right)\left(x^2+x+9\right)\)
f) \(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)=\left(x+5\right)\left(x^2-6x+25\right)\)
a) \(\left(x+y\right)^2-\left(x^2-y^2\right)\)
\(=x^2+2xy+y^2-x^2+y^2\)
\(=2y^2+2xy\)
\(=2y\left(x+y\right)\)
c) \(3x^2+6xy+3y^2-3z^2\)
\(=3\left(x^2+2xy+y^2-x^2\right)\)
\(=3\left[\left(x+y\right)^2-z^2\right]\)
\(=3\left(x+y+z\right)\left(x+y-z\right)\)
d) \(\left(2xy+1\right)^2-\left(2x+y\right)^2\)
\(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)
\(=\left[\left(2xy+2x\right)+\left(y+1\right)\right]\left[\left(2xy-2x\right)-\left(y-1\right)\right]\)
\(=\left[2x\left(y+1\right)+\left(y+1\right)\right]\left[2x\left(y-1\right)-\left(y-1\right)\right]\)
\(=\left(2x+1\right)\left(y+1\right)\left(2x-1\right)\left(y-1\right)\)
\(=\left(4x^2-1\right)\left(y^2-1\right)\)
a) 5x3 - 40 = 5( x3 - 8 ) = 5( x - 2 )( x2 + 2x + 4 )
b) x2z + 4xyz + 4y2z = z( x2 + 4xy + 4y2 ) = z( x + 2y )2
c) 4x2 - y2 - 6x + 3y = ( 4x2 - y2 ) - ( 6x - 3y ) = ( 2x - y )( 2x + y ) - 3( 2x - y ) = ( 2x - y )( 2x + y - 3 )
d) x2 + 2x - 4y2 + 1 = ( x2 + 2x + 1 ) - 4y2 = ( x + 1 )2 - ( 2y )2 = ( x - 2y + 1 )( x + 2y + 1 )
e) 3x2 - 3y2 - 12x + 12y = 3( x2 - y2 - 4x + 4y ) = 3[ ( x2 - y2 ) - ( 4x - 4y ) ] = 3[ ( x - y )( x + y ) - 4( x - y ) ] = 3( x - y )( x + y - 4 )
f) x3 + 5x2 + 4x + 20 = x2( x + 5 ) + 4( x + 5 ) = ( x + 5 )( x2 + 4 )
g) x3 - x2 - 25x + 25 = x2( x - 1 ) - 25( x - 1 ) = ( x - 1 )( x2 - 25 ) = ( x - 1 )( x - 5 )( x + 5 )
a) \(5x^3-40=5\left(x^3-8\right)=5\left(x-2\right)\left(x^2+2x+4\right)\)
b) \(x^2z+4xyz+4y^2z=z\left(x^2+4xy+4y^2\right)=z\left(x+2y\right)^2\)
c) \(4x^2-y^2-6x+3y=\left(4x^2-y^2\right)-\left(6x-3y\right)\)
\(=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)
d) \(x^2+2x-4y^2+1=x^2+2x+1-4y^2\)
\(=\left(x+1\right)^2-4y^2=\left(x+2y+1\right)\left(x-2y+1\right)\)
e) \(3x^2-3y^2-12x+12y=3\left(x^2-y^2-4x+4y\right)\)
\(=3\left[\left(x^2-y^2\right)-\left(4x-4y\right)\right]=3\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]\)
\(=3\left(x-y\right)\left(x+y+4\right)\)
f) \(x^3+5x^2+4x+20=\left(x^3+5x^2\right)+\left(4x+20\right)\)
\(=x^2.\left(x+5\right)+4\left(x+5\right)=\left(x^2+4\right)\left(x+5\right)\)
g) \(x^3-x^2-25x+25=\left(x^3-x^2\right)-\left(25x-25\right)\)
\(=x^2\left(x-1\right)-25\left(x-1\right)=\left(x-1\right)\left(x^2-25\right)\)
\(=\left(x-1\right)\left(x-5\right)\left(x+5\right)\)
Đổi dấu – (4yx2 + yz2)(z – y2) = (4yx2 + yz2)( y2 – z), ta có thừa số
(y2 – z) chung:
C = (y2 – z)(2x2y – yz) – (4yx2 + yz2)(z – y2) + 6x2z(y2 – z)
= (y2 – z)(2x2y – yz) + (4yx2 + yz2)( y2 – z) + 6x2z(y2 – z)
= (y2 – z)[( 2x2y – yz ) + (4yx2 + yz2) + 6x2z]
= (y2 – z)[ 2x2y + 4yx2 + 6x2z]
= (y2 – z)[ 2xy2 + 4yx2 + 6x2z]
= (y2 – z)[ 2x2(y + 2y + 3z)]
= (y2 – z)[ 2x2(3y + 3z)]
= (y2 – z) 2x2 .3(y + z)
= 6x2(y2 – z)(y + z).
a) 7x2 - 4x
= x ( 7x - 4 )
b) 5x2 - 2x + 10 xy - 4y
= x ( 5x - 2 ) + 2y ( 5x - 2 )
= ( x + 2y ) ( 5x - 2 )
Ta nhân thấy nghiệm của f(x) nếu có thì x = , chỉ có f(2) = 0 nên x = 2 là nghiệm của f(x) nên f(x) có một nhân tử là x – 2. Do đó ta tách f(x) thành các nhóm có xuất hiện một nhân tử là x – 2
Cách 1:
x3 – x2 – 4 =(x3-2x2)+(x2-2x)+(2x-4)=x2(x-2)+x(x-2)+2(x-2)=(x-2)(x2+x+2)
Cách 2:
(x-2)[(x2+2x+4)-(x+2)]=(x-2)(x2+x+2)
x3-x2-4=x3-8-x2+4=(x3-8)-(x2-4)=(x-2)(x2+2x+4)-(x-2)(x+2)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
a) \(x^2-10x+9\)
\(=x^2-x-9x+9\)
\(=x\left(x-1\right)-9\left(x-1\right)\)
\(=\left(x-1\right)\left(x-9\right)\)
b) \(3x^2-10xy+3y^2\)
\(=3x^2-xy-9xy+3y^2\)
\(=x\left(3x-y\right)-3y\left(3x-y\right)\)
\(=\left(x-3y\right)\left(3x-y\right)\)
c) \(2x^2-5x+2\)
\(=2x^2-x-4x+2\)
\(=x\left(2x-1\right)-2\left(2x-1\right)\)
\(=\left(2x-1\right)\left(x-2\right)\)
d) \(2xy-x^2+3y^2-4y+1\)
\(=-\left(x^2-2xy+y^2\right)+\left(4y^2-4y+1\right)\)
\(=-\left(x-y\right)^2+\left(2y-1\right)^2\)
\(=\left(2y-1\right)^2-\left(x-y\right)^2\)
\(=\left(2y-1-x+y\right)\left(2y-1+x-y\right)\)
\(=\left(3y-x-1\right)\left(x+y-1\right)\)