K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=2x^3+x^2-2x^2-x+6x+3\)

\(=\left(2x+1\right)\left(x^2-x+3\right)\)

b: \(=x^3+x^2+4x^2+4x+4x+4\)

\(=\left(x+1\right)\left(x^2+4x+4\right)\)

\(=\left(x+1\right)\left(x+2\right)^2\)

c: \(=\left(x^2+7x+12\right)\left(x^2+7x+10\right)-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

9 tháng 8 2018

mk ghi đáp án, còn lại bạn tự biến đổi

a) \(2x^3-x^2+5x+3=\left(2x+1\right)\left(x^2-x+3\right)\)

b) \(x^3+5x^2+8x+4=\left(x+1\right)\left(x+2\right)^2\)

c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

d) \(4x^4+1=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)

e) \(x^4-7x^3+14x^2-7x+1=\left(x^2-4x+1\right)\left(x^2-3x+1\right)\)

9 tháng 8 2018

mk làm chi tiết theo yêu của của người hỏi đề:

a) \(2x^3-x^2+5x+3\)

\(=\left(2x^3-2x^2+6x\right)+\left(x^2-x+3\right)\)

\(=2x\left(x^2-x+3\right)+\left(x^2-x+3\right)\)

\(=\left(2x+1\right)\left(x^2-x+3\right)\)

b)  \(x^3+5x^2+8x+4\)

\(=\left(x^3+4x^2+4x\right)+\left(x^2+4x+4\right)\)

\(=x\left(x^2+4x+4\right)+\left(x^2+4x+4\right)\)

\(=\left(x+1\right)\left(x^2+4x+4\right)\)

\(=\left(x+1\right)\left(x+2\right)^2\)

26 tháng 9 2018

      \(x^3-x^2-14x+24\)

\(=x^3-2x^2+x^2-2x-12x+24\)

\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+x-12\right)\)

\(=\left(x-2\right).\left[x^2+4x-3x-12\right]\)

\(=\left(x-2\right).\left[x\left(x+4\right)-3\left(x+4\right)\right]\)

\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)

      \(x^4+x^3+2x-4\)

\(=x^4-x^3+2x^3-2x^2+2x^2-2x+4x-4\)

\(=x^3\left(x-1\right)+2x^2\left(x-1\right)+2x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3+2x^2+2x+4\right)\)

\(=\left(x-1\right).\left[x^2\left(x+2\right)+2\left(x+2\right)\right]\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+2\right)\)

      \(8x^4-2x^3-3x^2-2x-1\)

\(=8x^4-8x^3+6x^3-6x^2+3x^2-3x+x-1\)

\(=8x^3\left(x-1\right)+6x^2\left(x-1\right)+3x\left(x-1\right)+x-1\)

\(=\left(x-1\right)\left(8x^3+6x^2+3x+1\right)\)

\(=\left(x-1\right)\left[\left(8x^3+1\right)+\left(6x^2+3x\right)\right]\)

\(=\left(x-1\right)\left[\left(2x+1\right)\left(4x^2-2x+1\right)+3x\left(2x+1\right)\right]\)

\(=\left(x-1\right)\left(2x+1\right)\left(4x^2+x+1\right)\)

      \(3x^2-7x+2\)

\(=3x^2-6x-x+2\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

Chúc bạn học tốt.

15 tháng 11 2016

c​âu c:x^4-2x^3-x^2+x^3-2x^2-x+5x^2-10x-5=x^2(x^2-2x-1)+x(x^2-2x-1)+5(x^2-2x-1)=(x^2-2x-1)(x^2+x+5)

23 tháng 12 2016

a, \(x^4+6x^3+7x^2-6x+1\)

\(=x^4-2x^2+1+6x^3+9x^2+6x\)

\(=\left(x^2-1\right)^2+6x\left(x^2-1\right)+9x^2\)

\(=\left(x^2-1+3x\right)^2\)

b, \(x^4-7x^3+14x^2-7x+1\)

\(=x^4+2x^2+1+7x^3+12x^2-7x\)

\(=\left(x^2+1\right)^2-7x\left(x^2+1\right)+12^2\)

\(=\left(x^2-1+3x\right)^2\)

c, \(12x^2-11x-36\)

\(=12x^2-27x+16x-36\)

\(=3x\left(4x-9\right)+4\left(4x-9\right)\)

\(=\left(4x-9\right)\left(3x+4\right)\)

18 tháng 8 2017

x+ 7x - 6=x2 . x + 7x - 22 + 2 = (x2 - 22) + (x+7x)+2=(x-2) . (x+2) + 8x + 2

x3 - 5x + 8x - 4=x2 . x -5x + 8x -22 = (x2 - 22) . (x -5x + 8x )=(x-2) . (x+2) . 4x

x3 - 9x2 + 6x + 16=x2 . x - 9x2 + 6x + 16 = (x- 9x2) . (x+6x) + 16=(x-9x) . (x+9x) . 7x + 16

k mk nha

3 tháng 8 2020

a. \(x^2-2x-3=x^2+x-3x-3=x\left(x+1\right)-3\left(x+1\right)=\left(x-3\right)\left(x+1\right)\)

b. \(x^2-4xy+3y^2=x^2-xy-3xy+3y^2=x\left(x-y\right)-3y\left(x-y\right)=\left(x-3y\right)\left(x-y\right)\)

c.  \(x^2-5x-24=\left(x-8\right)\left(x+3\right)\)

3 tháng 8 2020

e. \(2x^4+7x^2+3\)

\(=2x^4+x^2+6x^2+3\)

\(=x^2\left(2x^2+1\right)+3\left(2x^2+1\right)\)

\(=\left(x^2+3\right)\left(2x^2+1\right)\)

16 tháng 7 2018

a)   \(x^3-2x^2-6x+12\)

\(=x^2\left(x-2\right)-6\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-6\right)\)

\(=\left(x-2\right)\left(x-\sqrt{6}\right)\left(x+\sqrt{6}\right)\)

b)  \(x^4-7x^2+12\)

\(=x^4-3x^2-4x^2+12\)

\(=x^2\left(x^2-3\right)-4\left(x^2-3\right)\)

\(=\left(x^2-3\right)\left(x^2-4\right)\)

\(=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-2\right)\left(x+2\right)\)

c)  \(x^2-5x+4\)

\(=x^2-x-4x+4\)

\(=x\left(x-1\right)-4\left(x-1\right)\)

\(=\left(x-1\right)\left(x-4\right)\)

d)  \(3x^2+5x+2\)

\(=3x^2+3x+2x+2\)

\(=3x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(3x+2\right)\)

e)  \(x^3-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2 -1\right]\)

\(=\left(x+y\right)\left(x^2+y^2+2xy-1\right)\)