K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

Phân tích đa thức thành nhân tử:

a) 5x - 5y

= 5(x - y)

b) 3xy2 + x2y

= xy(3y + x)

c) 12x2y - 18xy2 - 30y3

= 2y(6x2 - 9xy - 15y2)

= 2y(6x2 + 6xy - 15xy - 15y2)

= 2y[6x(x + y) - 15y(x + y)]

= 2y(x + y)(6x - 15y)

= 6y(x + y)(2x - 5y)

d) -17x3y - 34x2y2 + 51xy3

= -17xy(x2 + 2xy - 3y2)

= -17xy(x2 - xy + 3xy - 3y2)

= -17xy[x(x - y) + 3y(x - y)]

= -17xy(x - y)(x + 3y)

e) x(y - 1) + 3(y - 1)

= (y - 1)(x + 3)

f) 162(x - y) - 10y(y - x)

= 162(x - y) + 10y(x - y)

= (x - y)(162 + 10y)

= (x - y)(256 + 10y)

a) Ta có: 5x-5y

=5(x-y)

b) Ta có: \(3xy^2+x^2y\)

\(=xy\left(3y+x\right)\)

c) Ta có: \(12x^2y-18xy^2-30y^3\)

\(=6y\left(2x^2-3xy-5y^2\right)\)

\(=6y\left(2x^2-5xy+2xy-5y^2\right)\)

\(=6y\left[2x\left(x+y\right)-5y\left(x+y\right)\right]\)

\(=6y\left(x+y\right)\left(2x-5y\right)\)

d) Ta có: \(-17x^3y-34x^2y^2+51xy^3\)

\(=-17xy\left(x^2+2xy-3y^2\right)\)

\(=-17xy\left(x^2+3xy-xy-3y^2\right)\)

\(=-17xy\left[x\left(x+3y\right)-y\left(x+3y\right)\right]\)

\(=-17xy\left(x+3y\right)\left(x-y\right)\)

e) Ta có: x(y-1)+3(y-1)

=(y-1)(x+3)

16 tháng 10 2018

\(1,4x^4+4x^2y^2-8y^4\)

\(=4\left(x^4+x^2y^2-y^4-y^4\right)\)

\(=4\left[\left(x^4-y^4\right)+\left(x^2y^2-y^4\right)\right]\)

\(=4\left[\left(x^2+y^2\right)\left(x^2-y^2\right)+y^2\left(x^2-y^2\right)\right]\)

\(=4\left(x^2-y^2\right)\left(x^2+y^2+y^2\right)\)

\(=4\left(x-y\right)\left(x+y\right)\left(x^2+2y^2\right)\)

16 tháng 10 2018

\(2,12x^2y-18xy^2-30y^3\)

\(=6y\left(2x^2-3xy-5y^2\right)\)

\(=6y\left[\left(2x^2+2xy\right)-\left(5xy+5y^2\right)\right]\)

\(=6y\left[2x\left(x+y\right)-5y\left(x+y\right)\right]\)

\(=6y\left(x+y\right)\left(2x-5y\right)\)

17 tháng 8 2018

\(3x^3y^2-6x^2y^3+9x^2y^2=3x^2y^2\left(x-2y+3\right)\)

\(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)

\(12x^2y-18xy^2-3xy^2=3xy\left(4x-6y-y\right)\)

\(5\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(5-y\right)\)

\(y\left(x-z\right)+7\left(z-x\right)=y\left(x-z\right)-7\left(x-z\right)=\left(x-z\right)\left(y-7\right)\)
\(27x^2\left(y-1\right)-9x^3\left(1-y\right)=27x^2\left(y-1\right)+9x^3\left(y-1\right)=9x^2\left(y-1\right)\left(3-x\right)\)

17 tháng 8 2018

Cảm ơn bn Kudo nhìu nha!!!

10 tháng 3 2020

a. \(x^3-2x^2+x\)

\(=x^3-x^2-x^2+x\)

\(=x^2\left(x-1\right)-x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-x\right)\)

\(=\left(x-1\right)x\left(x-1\right)\)

\(=x\left(x-1\right)^2\)

b. \(x^2-2x-15\)

\(=\left(x^2-2x+1\right)-16\)

\(=\left(x-1\right)^2-4^2\)

\(=\left(x-1-4\right)\left(x-1+4\right)\)

\(=\left(x-5\right)\left(x-3\right)\)

c. \(5x^2y^3-25x^3y^4+10x^3y^3\)

\(=5x^2y^3\left(1-5xy+2x\right)\)

d. \(12x^2y-18xy^2-30y^2\)

\(=6y\left(2x^2-3xy-5y\right)\)

e. \(5\left(x-y\right)-y\left(x-y\right)\)

\(=\left(x-y\right)\left(5-y\right)\)

10 tháng 3 2020

cảm ơn nha

31 tháng 10 2020

a) \(6x^3-12x^2y^2+6xy^3=6x.\left(x^2-2xy^2+y^3\right)\)

b) \(\left(x^2+4\right)^2-16=\left(x^2+4-4\right)\left(x^2+4+4\right)=x^2\left(x^2+8\right)\)

c) \(5x^2-5xy-10x+10y=\left(5x^2-5xy\right)-\left(10x-10y\right)=5x\left(x-y\right)-10\left(x-y\right)\)

\(=\left(x-y\right)\left(5x-10\right)=5\left(x-y\right)\left(x-2\right)\)

d) \(a^3-3a+3b-b^3=\left(a^3-b^3\right)-\left(3a-3b\right)=\left(a-b\right)\left(a^2+ab+b^2\right)-3.\left(a-b\right)\)

\(=\left(a-b\right)\left(x^2+ab+b^2-3\right)\)

e) \(x^2-2x-y^2+1=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-1-y\right)\left(x-1+y\right)\)

f) \(x^2-x-2=x^2+x-2x-2=\left(x^2+x\right)-\left(2x+2\right)=x\left(x+1\right)-2\left(x+1\right)\)

\(=\left(x+1\right)\left(x-2\right)\)

g) \(x^4-5x^2+4=x^4-4x^2+4-x^2=\left(x^4-4x^2+4\right)-x^2=\left(x^2-2\right)^2-x^2\)

\(=\left(x^2-2-x\right)\left(x^2-2+x\right)\)

j) \(x^3-x^3-2x^2-x=-2x^2-x=-\left(2x^2+x\right)=-x\left(2x+1\right)\)

k) \(\left(a^3-27\right)-\left(3-a\right)\left(6a+9\right)=\left(a-3\right).\left(a^2+3a+9\right)+\left(a-3\right)\left(6a+9\right)\)

\(\left(a-3\right)\left(a^2+3a+9+6a+9\right)=\left(a-3\right)\left(a^2+9a+18\right)\)

h) \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)

\(=x^2y-x^2z+y^2z-y^2x+z^2x-z^2y\)

\(=\left(x^2y-y^2x\right)-\left(x^2z-y^2z\right)+\left(z^2x-z^2y\right)\)

\(=xy\left(x-y\right)-z\left(x^2-y^2\right)+z^2\left(x-y\right)\)

\(=xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\)

\(=\left(x-y\right)\left(xy-zx-zy+z^2\right)\)

\(=\left(x-y\right)\left[\left(xy-zx\right)-\left(zy-z^2\right)\right]\)

\(=\left(x-y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]\)

\(\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

23 tháng 7 2016

1/a ) = (x+y)3 -(x+y)

= (x+y)[(x+y)2+1]

c) = 5(x2-xy+y2)-20z2

=5(x-y)2-20z2

= 5 [ (x-y)2- 4z2 ]

=5(x-y-4z)(x-y+4z)
 

23 tháng 7 2016

Bài 1:

a) x3-x+3x2y+3xy2+y3-y

=x3+2x2y-x2+xy2-xy+x2y+2xy2-xy+y3-y2+x2+2xy-x+y2-y

=x(x2+2xy-x+y2-y)+y(x2+2xy-x+y2-y)+(x2+2xy-x+y2-y)

=(x2+2xy-x+y2-y)(x+y+1)

=[x(x+y-1)+y(x+y-1)](x+y+1)

=(x+y-1)(x+y)(x+y+1) 

c) 5x2-10xy+5y2-20z2

=-5(2xy-y2+4z2-2)

Bài 2:

5x(x-1)=x-1   

=>5x2-6x+1=0

=>5x2-x-5x+1

=>x(5x-1)-(5x-1)

=>(x-1)(5x-1)=0

=>x=1 hoặc x=1/5

b) 2(x+5)-x2-5x=0

=>2(x+5)-x(x+5)=0

=>(2-x)(x+5)=0

=>x=2 hoặc x=-5

23 tháng 7 2016

1) 

a) (x+y)3-(x+y)= (x+y)(x+y-1)

b) xem lại đề câu B nha bạn

2)

a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc=0

(a+b)3+c3-3ab(a+b+c)=0

(a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c)=0

(a+b+c)(a2+b2+c2-xy-yz-xz)=0

Suy ra: a3+b3+c3=3abc

 

7 tháng 10 2016

1. a) = (x+y)3 -(x+y) =(x+y)((x+y)2 -1)

     = (x+y)(x+y+1)(x+y-1)

b) = 5(( x-y)2 - 4z2)

     = 5( x-y +2z)(x-y-2z)

2. áp dụng ( a+b+c)3 = .....rồi biến đổi

     

11 tháng 8 2019

\(\text{a) }x^3y^3+x^2y^2+4\)

\(=x^3y^3+2x^2y^2-x^2y^2+4\)

\(=\left(x^3y^3+2x^2y^2\right)-\left(x^2y^2-4\right)\)

\(=x^2y^2\left(xy+2\right)-\left(xy+2\right)\left(xy-2\right)\)

\(=\left(xy+2\right)\left(x^2y^2-xy+2\right)\)

11 tháng 8 2019

\( {c)}\)\(x^4+x^3+6x^2+5x+5\)

\(=\left(x^4+x^3+x^2\right)+\left(5x^2+5x+5\right)\)

\(=x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2+5\right)\)

\({d)}\)\(x^4-2x^3-12x^2+12x+36\)

\(=\left(x^4-2x^3-6x^2\right)-\left(6x^2-12x-36\right)\)

\(=x^2\left(x^2-2x-6\right)-6\left(x^2-2x-6\right)\)

\(=\left(x^2-2x-6\right)\left(x^2-6\right)\)

Câu b sai đề thì phải ah

17 tháng 7 2017

a) \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)

                  \(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

                  \(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\)

b) sửa đề nhé!

\(6x-9-x^2=-\left(x^2-6x+9\right)\)

                       \(=-\left(x-3\right)^2\)