K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2020

a) 2xy + 3zy + 6y + xz

= (2xy + 6y) + (xz + 3zy)

= 2y(x + 3y) + z(x + 3y)

= (x + 3y)(2y + z)

b) x2 - 10x + 25

= x2 - 2.x.5 + 52

= (x - 5)2

c) x2 + 6x + 9 - y2

= x2 + 2.x.3 + 32 - y2

= (x - 3)2 - y2

= (x - 3 - y)(x - 3 + y)

d) x3 - 4x2 - xy2 + 4x

= x(x2 - 4x + 4 - y2)

= x[(x - 2)2 - y2]

= x(x - 2 - y)(x - 2 + y)

25 tháng 10 2020

a) \(2x-6y=2\left(x-3y\right)\)

b) \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)

c) \(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)

d) \(x^2-2xy+y^2-9\)

\(=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)

e) \(x^3-10x^2+25x=x\left(x^2-10x+25\right)=x\left(x-5\right)^2\)

f) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)

25 tháng 10 2020

a. 2x - 6y

Bài làm

a. 2x - 6y

= 2(x - 3y)

b. x2 - y2 

= (x - y)(x + y)

c. 2x3 + 4x2 + 2x

= 2x(x2 + 2 + 1)

= 2x(x2 + 3)

d. x2 - 2xy + y2 - 9

= (x2 - 2xy + y2) - 9

= (x - y)2 - 9

= (x - y - 3)(x - y + 3)

e. x3 - 10x2 + 25x

= x(x2 - 10x + 25)

= x(x2 - 2.5.x + 52)

= x(x + 5)2

f. xy + y2 - x - y

= y(x + y) - (x + y)

= (x + y)(y - 1)

25 tháng 10 2020

a) 2x - 6y = 2( x - 3y )

b) x2 - y2 = ( x - y )( x + y )

c) 2x3 + 4x2 + 2x = 2x( x2 + 2x + 1 ) = 2x( x + 1 )2

d) x2 - 2xy + y2 = ( x2 - 2xy + y2 ) - 9 = ( x - y )2 - 32 = ( x - y - 3 )( x - y + 3 )

e) x3 - 10x2 + 25x = x( x2 - 10x + 25 ) = x( x - 5 )2

f) xy + y2 - x - y = ( xy + y2 ) - ( x + y ) = y( x + y ) - ( x + y ) = ( x + y )( y - 1 )

20 tháng 10 2021

a) \(4x-8y\)

\(=4x-4.2y\)

\(=4\left(x-2y\right)\)

20 tháng 10 2021

b) \(x^2+2xy+y^2\)

\(=x^2+xy+xy+y^2\)

\(=x\left(x+y\right)+y\left(x+y\right)\)

\(=\left(x+y\right)^2\)

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)

c) \(x^2+x-ax-a\)

\(=x\left(x+1\right)-a\left(x+1\right)\)

\(=\left(x+1\right)\left(x-a\right)\)

d) \(2xy-ax+x^2-2ay\)

\(=2y\left(x-a\right)+x\left(x-a\right)\)

\(=\left(x-a\right)\left(2y+x\right)\)

e) \(x^2y+xy^2-x-y\)

\(=xy\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(xy-1\right)\)

f) \(25-10x-4y^2+x^2\)

\(=\left(x^2-10x+25\right)-\left(2y\right)^2\)

\(=\left(x-5\right)^2-\left(2y\right)^2\)

\(=\left(x-5-2y\right)\left(x-5+2y\right)\)

g) \(x^3-6xy+9y^2-36\)

h) \(4x^2-9y^2+4x-6y\)

\(=\left(2x\right)^2-\left(3y\right)^2+2\left(2x-3y\right)\)

\(=\left(2x-3y\right)\left(2x+3y\right)+2\left(2x-3y\right)\)

\(=\left(2x-3y\right)\left(2x+3y+2\right)\)

k) \(-x^2+5x+2xy-5y-y^2\)

\(=-\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)

\(=-\left(x-y\right)^2+5\left(x-y\right)\)

\(=\left(x-y\right)\left(-x+y+5\right)\)

i) \(4x^2-25y^2-6x+15y\)

\(=\left(2x\right)^2-\left(5y\right)^2-3\left(2x-5y\right)\)

\(=\left(2x-5y\right)\left(2x+5y\right)-3\left(2x-5y\right)\)

\(=\left(2x-5y\right)\left(2x+5y-3\right)\)

28 tháng 1 2020

a, \(x\left(y+z\right)^2+y\left(x+z\right)^2+z\left(x+y\right)^2+4xyz\)

\(=x\left(y+z\right)^2+x^2\left(y+z\right)+yz\left(y+z\right)\)

\(=\left(y+z\right)\left(xy+xz+z^2+yz\right)\)

\(=\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)

\(=\left(y+z\right)\left(x+z\right)\left(x+y\right)\)

b, \(yz\left(y+z\right)+xz\left(z-x\right)-xy\left(x+y\right)\)

\(=yz\left(y+z\right)+xz^2-x^2z-x^2y-xy^2\)

\(=yz\left(y+z\right)-x\left(y+z\right)\left(y-z\right)-x^2\left(y+z\right)\)

\(=\left(y+z\right)\left(yz-xy+xz-x^2\right)\)

\(=\left(y+z\right)\left[y\left(z-x\right)+x\left(z-x\right)\right]\)

\(=\left(y+z\right)\left(y+x\right)\left(z-x\right)\)

16 tháng 11 2018

b.10x(x-y)-6y(y-x)=10x(x-y)+6y(x-y)=(10x+6y)(x-y)

16 tháng 11 2018

c.3x2+5y-3xy-5x=(3x2--3xy)-(5x-5y)=3x(x-y)-5(x-y)=(3x-5)(x-y)

24 tháng 9 2016

4x2 -6x= 2x(2x-3)

b) 3x3 -6x2y -24xy + 12x\(3x\left(x^2-2xy-8y+4x\right)\)

c) x2 -25 + y2 + 2xy\(=x^2+2xy+y^2-25\)\(=\left(x+y\right)^2-5^2\)

=>\(\left(x+y+5\right)\left(x+y-5\right)\)

18 tháng 3 2018

\(a,x^2+6x+9\)

\(=x^2+3x+3x+9\)

\(=\left(x^2+3x\right)+\left(3x+9\right)\)

\(=x.\left(x+3\right)+3.\left(x+3\right)\)

\(=\left(x+3\right).\left(x+3\right)\)

\(=\left(x+3\right)^2\)

\(b,10x-25-x^2\)

\(=-\left(x^2-2.5.x+5^2\right)\)

\(=-\left(x-5\right)^2\)

\(c,x^2+4x-y^2+4\)

\(=\left(x^2+2.2.x+2^2\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2-y\right).\left(x+2+y\right)\)

\(d,3x^2+6xy+3y^2-3z^2\)

\(=3.[\left(x^2+2xy+y^2\right)-z^2]\)

\(=3.[\left(x+y\right)^2-z^2]\)

\(=3.\left(x+y-z\right)\left(x+y+z\right)\)

\(e,x^2-2xy+y^2-z^2+2zt-t^2\)

\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)

\(=\left(x-y\right)^2-\left(z-t\right)^2\)

\(=[\left(x-y\right)-\left(z-t\right)].[\left(x-y\right)+\left(z-t\right)]\)

\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)

20 tháng 3 2018

bai tim x bai 5 co