Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
Đặt \(x^2+5x+5=t\)
=> Đa thức trở thành
\(\left(t-1\right)\left(t+1\right)+1\)
\(=t^2-1+1\)
\(=t^2\)
Thay vào ta được
Đt=\(\left(x^2+5x+5\right)^2\)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\) (1)
Đặt \(x^2+5x+5=t\) thì (1)
\(\Leftrightarrow\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+5x+5\right)^2\)
Câu 1:
\(=x^4-16x^2+64+36\)
\(=x^4-16x^2+100\)
\(=x^4+20x^2+100-36x^2\)
\(=\left(x^2+10\right)^2-\left(6x\right)^2\)
\(=\left(x^2-6x+10\right)\left(x^2+6x+10\right)\)
Câu 2: \(=x^4+2x^2+1-x^2\)
\(=\left(x^2+1\right)^2-x^2\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
a, \(4x\left(x-3\right)-3x\left(2+x\right)=4x^2-12x-6x^2-3x^2=-5x^2-12x\)
b, \(2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)=10x^2+4x+6x^2-11x+3\)
\(=16x^2-7x+3\)
c, \(\left(x-1\right)^2-\left(x+2\right)\left(x-2\right)=x^2-2x+1-x^2+4=-2x+5\)
d, \(\left(1+2x\right)+2\left(1+2x\right)\left(x-1\right)+\left(x-1\right)^2\)
\(=1+2x+2\left(x-1+2x^2-2x\right)+x^2-2x+1\)
\(=x^2+2+2\left(-x-1+2x^2\right)=x^2+2-2x-2+4x^2=5x^2-2x\)
a) a4 + a2 - 2
a4 + 2a2 - a2 - 2
a2.( a2 + 2 ) - ( a2 + 2 )
( a2 - 1 ).( a2 + 2 )
( a + 1 ).( a - 1 ).( a2 +2 )
b) x4 + 4x2 - 5
x4 + 5x2 - x2 - 5
x2.( x2 + 5 ) - ( x2 + 5 )
( x2 - 1 ).( x2 + 5 )
( x + 1 ).( x - 1 ).( x2 + 5 )
c) x3 - 19x - 30
x3 + 2x2 - 2x2 + 4x - 15x - 30
x2( x + 2 ) - 2x.( x + 2 ) - 15.( x + 2 )
( x + 2 ).( x2 - 2x - 15 )
d) x3 - 7x - 6
x3 - 3x2 + 3x2 - 9x + 2x - 6
x2.( x - 3 ) + 3x.( x - 3 ) + 2.( x - 3 )
( x - 3 ).( x2 + 3x +2 )
( x - 3 ).( x2 + 2x + x + 2 )
( x - 3 ).( x.( x + 2 ) + ( x + 2 )
( x + 1 ).( x + 2 ).( x - 3 )
e) x3 - 5x2 - 14x
x3 - 7x2 + 2x2 - 14x
x2.( x - 7 ) + 2x.( x - 7 )
( x - 7 ).( x2 + 2x )
x.( x + 2 ).( x - 7 )
Ta có :
\(x^4+4\)
\(=\left(x^2\right)^2+2.x^2.2+2^2-\left(2x\right)^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
\(x^3-3x^2+3x-1-y^3\)
\(=\left(x-1\right)^3-y^3\)
\(=\left(x-1-y\right)\left[\left(x-1\right)^2+y\left(x-1\right)+y^2\right]\)
\(=\left(x-y-1\right)\left[\left(x-1\right)\left(x-1+y\right)+y^2\right]\)
\(x^3-3x^2+3x-1-y^3\\ =\left(x-1\right)^3-y^3\\ =\left(x-1-y\right)\text{[ (x-1)^2+y(x-1)+y^2}\)
\(=\left(x-y-1\right)\left[\left(x-1\right)\left(x-1+y\right)+y^2\right]\)
Câu 1: 4cm
Câu 2: 6cm
Câu 3: 90o
Câu 4: -108
Câu 5: 2
Câu 6: 14
Câu 7: 43
Câu 8: -1
Câu 9: -3
Câu 10: -26
a).
\(\left(a+b+c\right)^3-a^3-b^3-c^3\\ =a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)-a^3-b^3-c^3\\ =3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
b).
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
đặt: \(t=x^2+3x+1\) khi đó:
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(t-1\right)\left(t+1\right)+1\\ =t^2-1+1=t^2\)
\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x+1\right)^2\)
a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
= \(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-\left(a^3+b^3+c^3\right)\)
= 3( a+b )(b+c )(c+a)