K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

Ta có \(x^2-\left(m+n\right)x+m.n=\left(x^2-mx\right)-\left(nx-m.n\right)\)

\(=x\left(x-m\right)-n\left(x-m\right)=\left(x-m\right)\left(x-n\right)\)

5 tháng 11 2019

\(x^3-y^3-36xy\)

\(=\left(x-y\right)^3+3xy\left(x-y\right)-36xy\)

\(=12^3+36xy-36xy\)

\(=1728\)

19 tháng 12 2016

Bài 1:

\(x^5+x+1\)

\(=x^5-x^4+x^2+x^4-x^3+x+x^3-x^2+1\)

\(=x^2\left(x^3-x^2+1\right)+x\left(x^3-x^2+1\right)+\left(x^3-x^2+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

Bài 2:

\(\frac{2n^2-3n+1}{2n+1}=\frac{n\left(2n+1\right)-4n+1}{2n+1}=\frac{n\left(2n+1\right)}{2n+1}-\frac{4n+1}{2n+1}=n-\frac{4n+1}{2n+1}\in Z\)

\(\Rightarrow4n+1⋮2n+1\)

\(\Rightarrow\frac{4n+1}{2n+1}=\frac{2\left(2n+1\right)-1}{2n+1}=\frac{2\left(2n+1\right)}{2n+1}-\frac{1}{2n+1}=2-\frac{1}{2n+1}\in Z\)

\(\Rightarrow1⋮2n+1\)

\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow2n\in\left\{0;-2\right\}\)

\(\Rightarrow n\in\left\{0;-1\right\}\)

 

15 tháng 6 2017

\(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)

2 tháng 10 2016

Phân tích thành nhân tử

\(=\left(my+nx\right)\left(ny+mx\right)\)

2 tháng 10 2016

mn(x+y2) +xy(m2 +n2)= mnx+mny+xym2 +xyn2

                                              =mx(nx + my) +ny( my +nx)

                                  =(mx+ny)(nx+my)

3 tháng 5 2019

a, \(x^4+2013x^2+2012x+2013\)

\(=x^4+2013x^2-x+2013x+2013\)

\(=\left(x^4-x\right)+\left(2013x^2+2013x+2013\right)\)

\(=x\left(x^3-1\right)+2013\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2013\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left\{x\left(x-1\right)+2013\right\}\)

\(=\left(x^2+x+1\right)\left(x^2-x+2013\right)\)

13 tháng 1 2018

 = 9.[(x^4+2x^2+1)-x^2] - (x^2+x+1)^2

 = 9.[(x^2+1)^2-x^2] - (x^2+x+1)^2

 = 9.(x^2+x+1).(x^2-x+1)-(x^2+x+1)^2

 = (x^2+x+1).(9x^2-9x+9-x^2-x-1)

 = (x^2+x+1).(8x^2-10x+8)

 = 2.(x^2+x+1).(4x^2--5x+4)

Tk mk nha nếu đúng

\(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)

Đặt \(x^2+3x+1=a,\)ta được:

\(a\left(a+1\right)-6\)

\(=a^2+a-6=\left(a^2+3a\right)-\left(2a+6\right)\)

\(=a\left(a+3\right)-2\left(a+3\right)=\left(a+3\right)\left(a-2\right)\)

Thay \(a=x^2+3x+1,\)ta được:

\(\left(x^2+3x+1+3\right)\left(x^2+3x+1-2\right)\)\(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)

5 tháng 8 2018

1) \(\left(5x-4\right)\left(4x-5\right)+\left(5x-1\right)\left(x+4\right)+3\left(3x-2\right)\)

\(=20x^2-41x+20+\left(5x-1\right)\left(x+4\right)+3\left(3x-2\right)\)

\(=20x^2-41+20+5x^2+19x-4+3\left(3x-2\right)\)

\(=20x^2-41x+20+5x^2+19x-4+9x-4\)

\(=25x^2-13x+10\)

2) \(\left(5x-4\right)^2+\left(16-25x^2\right)+\left(5x+4\right)\left(3x+2\right)\)

\(=\left(5x-4\right)^2+16-25x^2+\left(5x-4\right)\left(3x+2\right)\)

\(=25x^2-40x+16^2-25x^2+\left(5x-4\right)\left(3x+2\right)\)

\(=25x^2-40x+16^2-25x^2+15x^2-2x-8\)

\(=15x^2-42x+24\)