Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+xy+yz+zx\right)\)
a) =a2b - ab2 + b2c - bc2 + a2c - ac2
= abc +a2b - ab2 +b2c - bc2 +a2c - ac2 - abc
= (a2b - abc) - (ab2 - b2c) - (bc2 - ac2) - (a2c - abc)
= ab(a - c) - b2(a - c) - c2(b - a) - ac(a - b)
= [ab(a - c) - b2(a - c)] + [c2(a - b) - ac(a - b)]
= (a - c)(ab - b2) + (a - b)(c2 - ac)
= b(a - c)(a - b) + c(a - b)(c - a)
= b(a - c)(a - b) - c(a - b)(a - c)
= (a - c)(a - b)(b - c)
b)= ab2 - ac2 + bc2 - a2b + a2c - b2c
= abc + ab2 - ac2 + bc2 - a2b + a2c - b2c - abc
= (ab2 - abc) + (abc - ac2) - (b2c - bc2) - (a2b - a2c)
= ab(b - c) + ac( b - c) - bc(b - c) - a2(b - c)
= (b - c)(ab + ac - bc - a2)
= (b - c) [(ab - bc) + (ac - a2)]
= (b - c) [b(a - c) +a(c - a)]
= (b - c) [b(a - c) - a(a - c)]
= (b - c)(a - c)(b - a)
c) = ab3 - ac3 + bc3 - a3b + a3c - b3c
= a2bc + ab2c + abc2 + a3b + a2b2 + a2bc - a3c - a2bc - a2c2 + a2c2 + abc2 + ac3 - a2b2
- ab3 - ab2c + ab2c + b3c + b2c2 - abc2 - b2c2 - bc3 - a2bc - ab2c - abc2
= (a2bc + ab2c + abc2) +(a3b + a2b2 + a2bc) - (a3c - a2bc - a2c2) +(a2c2 + abc2 +ac3) -
(a2b2 + ab3 + ab2c) + (ab2c + b3c + b2c2) - (abc2 + b2c2 + bc3) - (a2bc + ab2c + abc2)
= abc(a + b + c) +a2b(a + b + c) - a2c(a + b + c) + ac2(a + b + c) - ab2(a + b + c) + b2c(a + b + c) - bc2(a + b + c) - abc(a + b+ c)
= (a +b +c)(abc + a2b - a2c + ac2 - ab2 + b2c - bc2 - abc)
= (a + b+ c) [(a2b - abc)+(abc - bc2) - (a2c - ac2) - (ab2 - b2c)]
= (a + b + c) [ab(a - c) + bc(a - c) - ac(a - c) - b2(a - c)]
= (a + b + c)(a - c)(ab + bc - ac - b2)
= (a +b + c)(a - c) [(ab - ac) - (b2 - bc)]
= (a + b+ c)(a - c) [a(b - c) - b(b - c)]
= (a + b + c)(a - c)(b - c)(a - b)
trời ơi sao câu c dài thế !!!!! Tui có bài giống vậy nhưng nó ra p/số, còn phải ghi nhiều hơn
Phân tích đa thức thành nhân tử
a) (1-2x)(1+2x)-x(x+2)(x-2)
\(=1-4x^2-x\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x\)
\(=\left(1-x^3\right)+\left(4x-4x^2\right)\)
\(=\left(1-x\right)\left(1+x+x^2\right)+4x\left(1-x\right)\)
\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)
\(=\left(1-x\right)\left(x^2+5x+1\right)\)
\(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)
\(=a^4+6a^3b+12a^2b^2+8b^3a-8a^3b-12a^2b^2+6ab^3-b^4\)
\(=a^4+6a^3b+8b^3a-8a^3b-6ab^3-b^4\)
\(=\left(a^4-b^4\right)+\left(6a^3b-6ab^3\right)+\left(8b^3a-8a^3b\right)\)
\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a^2-b^2\right)+8ab\left(b^2-a^2\right)\)
\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a-b\right)\left(a+b\right)-8ab\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3+6a^2b+6ab^2-8a^2b-8ab^2\right)\)
\(=\left(a-b\right)\left(a^3-a^2b-ab^2+b^3\right)\)
\(=\left(a-b\right)\left[a^2\left(a-b\right)-b^2\left(a-b\right)\right]\)
\(=\left(a-b\right)^3\left(a+b\right)\)
a(b2-c2) - b(a2-c2) + c(a2-b2)
= a(b2-c2) - a2b + bc2 + a2c - b2c
= a(b+c)(b-c) + a2(c-b) + bc(c-b)
= a(b+c)(b-c) - a2(b-c) - bc(b-c)
= (b-c)[ a(b+c) - a2 - bc]
= (b-c)[ ab +ac - a2 - bc]
= (b-c)[ a(b-a) + c(a-b) ]
= (b-c)[ c(a-b) - a(a-b) ]
= (b-c)(a-b)(c-a)
= (a-b)(b-c)(c-a)