K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2015

A=x^3y(x^4+x^2+1)

Hết

17 tháng 8 2015

x7y+x5y+x3y=x3y.(x4+x2+1)

=x3y.(x4+2x2+1-x2)

=x3y.[(x2+1)2-x2]

=x3y.(x2-x+1)(x2+x+1)

 

5 tháng 12 2015

a)x5+y5=(x+y)(x4y-x3y2+x2y3-xy4

b)tự làm nhá 

5 tháng 12 2015

sao bé đi hỏi toán 8 chi zợ

3 tháng 10 2016

x6+3x4y2-8x3y3+3x2y4+y6= x6+3x4y2+3x2y4+y6-8x3y3=(x2+y2)3-(2xy)3

= (x2+y2-2xy)[(x2+y2)2+2xy(x2+y2)+(2xy)2]= (x-y)2(x4+6x2y2+y4+2x3y+2xy3)

(x2+y2-5)2-4x2y2-16xy-16=(x2+y2-5)2-(4x2y2+16xy+16)=(x2+y2-5)2-(2xy+4)2

=(x2+y2-5+2xy+4)(x2+y2-5-2xy-4)=(x2+2xy+y2-1)(x2-2xy+y2-9)=[(x+y)2-1][(x-y)2-32]=(x+y-1)(x+y+1)(x-y-3)(x-y+3)

x4+324=x4+36x2+324-36x2=(x2+18)2-(6x)2=(x2+18-6x)(x2+18+6x)

 

23 tháng 6 2019

  ( a - x )y- ( a - y )x + ( x - y )a3

= ay3  + a2y2  -  ax2y  -  a2xy  - a2y2  -  a3y + a2x2 + a3x - xy3 - axy2 + x3y + ax2y + axy2 + a2xy - ax3 - a2x2

= ay( y2 +ay -x2 - ax ) - a2( y2 + ay -x2 -ax ) - xy( y2 + ay - x2 -ax ) + ax( y2 + ay -x2 -ax )

= ( y2 + ay - x2 - ax )( ay - a2 - xy + ax )

= ( y2 + xy +ay -xy -ax -x2 )[ ( y -a )a - x( y-a ) ]

= [ y( y +x +a ) - x( y + x + a )]( a - x )( a - y)

= ( y + x + a)( y -x )( a - x)( y - a)

23 tháng 6 2019

#)Bạn tham khảo nhé :

Câu hỏi của Linh Mà - Toán lớp 9 | Học trực tuyến

P/s : vô thống kê hỏi đáp của mk có thể dùng đc link nhé

4 tháng 9 2019

\(\left(x-y\right)z^3+\left(y-z\right)x^3+\left(z-x\right)y^3\)

\(=\left(x-y\right)z^3-\left[\left(x-y\right)+\left(z-x\right)\right]x^3+\left(z-x\right)y^3\)

\(=\left(x-y\right)z^3-\left(x-y\right)x^3-\left(z-x\right)x^3+\left(z-x\right)y^3\)

\(=\left(x-y\right)\left(z^3-x^3\right)-\left(z-x\right)\left(x^3-y^3\right)\)

\(=\left(x-y\right)\left(z-x\right)\left(z^2+zx+x^2\right)-\left(z-x\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=\left(x-y\right)\left(z-x\right)\left(z^2+zx+x^2-x^2-xy-y^2\right)\)

\(=\left(x-y\right)\left(z-x\right)\left[\left(x^2-x^2\right)+\left(zx-xy\right)+\left(z^2-y^2\right)\right]\)

\(=\left(x-y\right)\left(z-x\right)\left[x\left(z-y\right)+\left(z-y\right)\left(y+z\right)\right]\)

\(=\left(x-y\right)\left(z-x\right)\left(z-y\right)\left(x+y+z\right)\)

\(=-\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)\)