K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

dat \(x^2-2x+2=y\)

ta co pt

\(y^4+20x^2y^2+64x^4\)

\(=\left(8x^2\right)^2+2.8x^2.\frac{10}{8}y^2+\left(\frac{10^{ }}{8^{ }}y^2\right)^2-\frac{36}{64}y^4\)

\(=\left(8x^2+\frac{10}{8}y^2\right)^2-\left(\frac{6}{8}y^2\right)^2\)

\(=\left(8x^2+\frac{y^2}{2}\right)\left(8x^2+2y^2\right)\)

bạn thay y  nữa là xong

13 tháng 8 2016

\(\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)^2+64x^4\)

\(=\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)^2+100x^4-36x^4\)

\(=\left[\left(x^2-2x+2\right)^2+10x^2\right]^2-36x^4\)

\(=\left(x^4-4x^3+18x^2-8x+4\right)^2-\left(6x^2\right)^2\)

\(=\left(x^4-4x^3+24x^2-8x+4\right)\left(x^4-4x^3+12x^2-8x+4\right)\)

13 tháng 8 2016

\(\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)+64x^4\)

=\(\left[\left(x^2-2x+2\right)^4+2.10x^2\left(x^2-2x+2\right)^2+100x^4\right]\)-100x4+64x2

=\(\left[\left(x^2-2x+2\right)^2+10x^2\right]^2-36x^2\)

=\(\left[\left(x^2-2x+2\right)^2+4x^2\right].\left[\left(x^2-2x+2\right)^2+16x^2\right]\)

15 tháng 8 2016

bậc to thế ==

16 tháng 8 2016


 

24 tháng 9 2015

x3-5x2+x-5=0

=> x2.(x-5)+(x-5)=0

=> (x-5).(x2+1)=0

=> x-5=0                 hoặc x2+1=0

=> x=5                    hoặc x2=-1 (vô lí)

Vậy x=5.

x4-2x3+10x2-20x=0

=> x3.(x-2)+10x(x-2)=0

=> (x-2).(x3+10x)=0

=> x.(x-2).(x2+10)=0

=> x=0      hoặc x-2=0               hoặc x2+10=0

=> x=0       hoặc x=2                 hoặc x2=-10 (vô lí)

Vậy x=0 hoặc x=2.

12 tháng 12 2017

x=0,x=2

A = x8 + 2x5 - 2x4 + x2 - 2x - 100 + 10x.(x4 + x) + (5x - 1)2

A = (x8 + 2x5 + x2) - (2x4 + 2x) + 10x.(x4 + x) + (5x - 1)2 - 100

A = (x4 + x)2 - 2(x4 + x) + 10x. (x4 + x) + (5x -1)2 - 100

A = (x4 + x)2 + (x4 + x).(10x - 2) + (5x - 1)2 - 100

A = [(x4 + x)2 + 2.(x4 + x).(5x - 1) + (5x - 1)2 ] - 100

A = [x4 + x + 5x - 1]2 - 102

A = (x4 + 6x - 11).(x4 + 6x + 9)

Hok tốt ^_^

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

18 tháng 8 2020

a)

\(=x^2\left(2x+3\right)+\left(2x+3\right)\)

\(=\left(x^2+1\right)\left(2x+3\right)\)

b)

\(=a\left(a-b\right)+a-b\)

\(=\left(a+1\right)\left(a-b\right)\)

c)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left(x+1-y\right)\left(x+1+y\right)\)

d)

\(=x^3\left(x-2\right)+10x\left(x-2\right)\)

\(=x\left(x^2+10\right)\left(x-2\right)\)

e)

\(=x\left(x^2+2x+1\right)\)

\(=x\left(x+1\right)^2\)

f)

\(=y\left(x+y\right)-\left(x+y\right)\)

\(=\left(y-1\right)\left(x+y\right)\)

18 tháng 8 2020

a,2x3+3x2+2x+3

=(2x3+2x)+(3x2+3)

=2x(x2+1)+3(x2+1)

=(x2+1)(2x+3)

b,a2-ab+a-b

=(a2-ab)+(a-b)

=a(a-b)+(a-b)

=(a-b)(a+1)

c,2x2+4x+2-2y2

=2(x2+2x+1-y2)

=2[(x2+2x+1)-y2 ]

=2[(x+1)2-y2 ]

=2(x+1-y)(x+1+y)

d,x4-2x3+10x2-20x

=(x4-2x3)+(10x2-20x)

=x3(x-2)+10x(x-2)

=(x-2)(x3+10x)

=(x-2)[x(x2+10)]

e,x3+2x2+x

=x(x2+2x+1)

=x(x+1)2

f,xy+y2-x-y

=(xy+y2)-(x-y)

=y(x+y)-(x+y)

=(x+y)(y-1)

Đây là cách hiện đại :

 \(x^4-2x^3+2x-1\)

\(=\left(x^4-1\right)-\left(2x^3-2x\right)\)

\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(\left(x^2+1\right)-2x\right)\)

\(=\left(x+1\right)\left(x-1\right)\left(\left(x^2+1\right)-2x\right)\)

7 tháng 8 2016

a,=\(x^4-x^3-x^3+x^2-x^2+x+x-1\)

cu hai so nhom 1 nhom roi  dat thua so chung la xong

b,x^4+x^3+x^3+x^2+x^2+x+x+1

cu hai so lai nhom 1 nhom va dat thua so chung

23 tháng 7 2016

1/ \(x^2+x-90=\left(x^2-10x\right)+\left(9x-90\right)=x\left(x-10\right)+9\left(x-10\right)=\left(x-10\right)\left(x+9\right)\)

2/ \(2x^2+4xy+2y^2=\left(2x^2+2xy\right)+\left(2xy+2y^2\right)=2x\left(x+y\right)+2y\left(x+y\right)=\left(x+y\right)\left(2x+2y\right)\)

3/ \(2y^2-14y+24=2\left(y^2-7y+12\right)=2\left[\left(y^2-4y\right)+\left(12-3y\right)\right]=2\left[y\left(y-4\right)-3\left(y-4\right)\right]\)

\(=2\left(y-4\right)\left(y-3\right)\)

4/ \(x^8+x^4+1=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left[\left(x^6-x^5+x^4\right)-\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)\right]\)

\(=\left(x^2+x+1\right)\left[x^4\left(x^2-x+1\right)\right]-x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\)