Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x2+5x+1=t chẳng hạn. Khi đó: (x2+5x+1)(x2+5x+3)-15=t.(t+2)-15=t2+2t-15. Giải phương trình bậc hai ta được: t=3 hoặc t=-5. Phương trình bậc hai có 2 nghiệm x1, x2 thì được viết dưới dạng nhân tử là: a(x-x1)(x-x2).
Vậy (x2+5x+1)(x2+5x+3)-15=(t-3)(t+5)=(x2+5x-2)(x2+5x+6). Có gì sai sót mong bạn bỏ qua cho =))
\(x^4-5x^2+4=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
`#3107.101107`
a)
`A = 2x^2 + 5x^3 + x^2y`
`= x^2 * (2 + 5x + y)`
b)
`5x(x - 1) + 15(x - 1)`
`= (5x + 15)(x - 1)`
`= 5(x + 3)(x - 1)`
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^3+5x^2+x+5\)
\(=\left(x^3+x\right)+\left(5x^2+5\right)\)
\(=x\left(x^2+1\right)+5\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x+5\right)\)
\(x^3+5x^2+5x+1\)
\(=\left(x+1\right)\left(x^2+x+1\right)+5x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+6x+1\right)\)