Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+4x^2-5\)
\(=\left(x^4+4x^2+4\right)-9\)
\(=\left(x^2+2\right)^2-9\)
\(=\left(x^2+2+3\right)\left(x^2+2-3\right)\)
\(=\left(x^2+5\right)\left(x^2-1\right)\)
(x-y)^2+6(x-y)-2(x-y)-12=(x-y)((x-y)+6) -2((x-y)+6)=(x-y+6)(x-y-2)
a^4-a^2+2a^2-2=a^2(a^2-1)+2(a^2-1)=(a^2-1)(a^2+2)
a)
\(\left(x-y\right)^2+4\left(x-y\right)-12=\left(x-y\right)^2+4\left(x-y\right)+4-16\)
= \(\left(x-y+2\right)^2-16\)
= \(\left(x-y+2-4\right)\left(x-y+2+4\right)\)
= \(\left(x-y-2\right)\left(x-y+6\right)\)
b)
\(a^4+a^2-2\)
= \(\left(a^2+\frac{1}{2}\right)^2-\frac{9}{4}\)
= \(\left(a^2+\frac{1}{2}-\frac{3}{2}\right)\left(a^2+\frac{1}{2}+\frac{3}{2}\right)\)
= \(\left(a^2-1\right)\left(a^2+2\right)\)
a) \(x^2-5x+6=x^2-2x-3x+6=\left(x-2\right)\left(x-3\right)\)
b)\(3x^2+9x-30=3x^2-6x+15x-30=3\left(x-2\right)\left(x+5\right)\)
c)\(x^2-7x+12=x^2-3x-4x+12=\left(x-3\right)\left(x-4\right)\)
d)\(x^2-7x+10=x^2-2x-5x+10=\left(x-2\right)\left(x-5\right)\)
a) \(x^2-5x+6=x^2-2x-3x+6=\left(x^2-2x\right)-\left(3x-6\right)\)
\(=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)
b) \(3x^2+9x-30=3\left(x^2+3x-10\right)=3\left(x^2-2x+5x-10\right)\)
\(=3\left[\left(x^2-2x\right)+\left(5x-10\right)\right]=3\left[x\left(x-2\right)+5\left(x-2\right)\right]\)
\(=3\left(x-2\right)\left(x+5\right)\)
c) \(x^2-7x+12=x^2-3x-4x+12=\left(x^2-3x\right)-\left(4x-12\right)\)
\(=x\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-4\right)\)
d) \(x^2-7x+10=x^2-2x-5x+10=\left(x^2-2x\right)-\left(5x-10\right)\)
\(=x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(x-5\right)\)
a, 3x^2 + 13x + 10
= 3x^2 + 3x + 10x + 10
= 3x(x + 1) + 10(x + 1)
= (3x + 10)(x + 1)
b, x^2 - 10x + 21
= x^2 - 3x - 7x + 21
= x(x - 3) - 7(x - 3)
= (x - 7)(x - 3)
c, 6x^2 - 5x + 1
= 6x^2 - 3x - 2x + 1
= 3x(2x - 1) - (2x - 1)
= (3x - 1)(2x - 1)
Bạn đăng 1 lần nhiều bài như vậy làm người khác nản lắm đấy =) đơn giản bài rất dài mà mik cx ko chắc là bản thân mik có đc k hay ko nên phải nản vậy thôi :)
1a)\(3x^2+13x+10=3x^2+3x+10x+10\)
\(3x\left(x+1\right)+10\left(x+1\right)=\left(3x+10\right)\left(x+1\right)\)
b)\(x^2-10x+21=x^2-3x-7x+21\)
\(=x\left(x-3\right)-7\left(x-3\right)=\left(x-7\right)\left(x-3\right)\)
c)\(6x^2-5x+1=6x^2-3x-2x+1\)
\(=3x\left(2x-1\right)-\left(2x-1\right)=\left(3x-1\right)\left(2x-1\right)\)
\(x^8+x+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
a) 8x2 - 2x - 1
=8x2+2x-4x-1
=2x.(4x+1)-(4x+1)
=(4x+1)(2x-1)
b) x2 - y2 + 10x - 6y + 16
=x2+10x+25-y2-6y-9
=(x+5)2-(y+3)2
=(x+5-y-3)(x+5+y+3)
=(x-y+2)(x+y+8)
a,\(x^2y^2+y^3+zx^2+yz=\left(x^2y^2+y^3\right)+\left(zx^2+yz\right)\)
\(=y^2\left(x^2+y\right)+z\left(x^2+y\right)\)
\(=\left(y^2+z\right)\left(x^2+y\right)\)
b,\(x^4+2x^3-4x-4=x^4+2x^3+x^2-x^2-4x-4\)
\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
c,\(x^3+2x^2y-x-2y=\left(x^3+2x^2y\right)-\left(x+2y\right)\)
\(=x^2\left(x+2y\right)-\left(x+2y\right)\)
\(=\left(x^2-1\right)\left(x+2y\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+2y\right)\)
Lời giải:
a. Không phân tích được thành nhân tử
b. \(a^4+a^2-22=(a^2+\frac{1}{2})^2-\frac{89}{4}=(a^2+\frac{1-\sqrt{89}}{2})(a^2+\frac{1+\sqrt{89}}{2})\)
(thông thường nhân tử là số hữu tỉ, phân tích kiểu này như cố để thành nhân tử cũng không hợp lý lắm, bạn coi lại đề)
c.
$x^4+4x^2-5=(x^4-x^2)+(5x^2-5)$
$=x^2(x^2-1)+5(x^2-1)=(x^2-1)(x^2+5)=(x-1)(x+1)(x^2+5)$
Đề câu a là +1, câu b là -2 ạ
Giải lại giúp mk vs ạ