\(x^3+x^2-29x+24\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2016

a) nhận xét hệ số : 1 + 4 - 29 + 24 = 0

=> x3 + 4x2 - 29x + 24 = x2(x-1) + 5x(x-1) - 24(x-1)

= (x-1)(x2+5x-24) = (x-1)(x-3)(x+8)

b) ...

13 tháng 11 2016

a) \(x^3+4x^2-29x+24\)=\(\left(x+8\right)\left(x^2-4x+3\right)\)=\(\left(x+8\right)\left(x^2-x-3x+3\right)\)=\(\left(x+8\right)\left(x-1\right)\left(x-3\right)\)

b) \(x^4+6x^3+7x^2-6x+1\)=\(x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1\)=\(x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\)=\(\left(x^2+3x-1\right)\left(x^2+3x-1\right)\)=\(\left(x^2+3x-1\right)^2\)

22 tháng 12 2019

\(x^3+2x^2-29x-30=\left(x^3+x^2\right)+\left(x^2+x\right)-\left(30x+30\right)\)

\(=x^2\left(x+1\right)+x\left(x+1\right)-30\left(x+1\right)=\left(x+1\right)\left(x^2+x-30\right)\)

\(=\left(x+1\right)\left(x^2+6x-5x-30\right)=\left(x+1\right)\left[x\left(x+6\right)-5\left(x+6\right)\right]=\left(x+1\right)\left(x-5\right)\left(x+6\right)\)

29 tháng 9 2018

a,   \(x^3+4x^2-29x+24\)

\(=x^3-x^2+5x^2-5x-24x+24\)

\(=x^2\left(x-1\right)+5x\left(x-1\right)-24\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+5x-24\right)\)

\(=\left(x-1\right)\left[x\left(x-3\right)+8\left(x-3\right)\right]\)

\(=\left(x-1\right)\left(x-3\right)\left(x+8\right)\)

      \(x^3+6x^2+11x+6\)

\(=x^3+x^2+5x^2+5x+6x+6\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

Chúc bạn học tốt.

3 tháng 2 2019

\(x^3-x^2-14x+24\)

\(=x^3-2x^2+x^2-2x-12x+24\)

\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+x-12\right)\)

\(=\left(x-2\right)\left(x^2+4x-3x-12\right)\)

\(=\left(x-2\right)\left[x\left(x+4\right)-3\left(x+4\right)\right]\)

\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)

3 tháng 2 2019

Ta có:\(x^3-x^2-14x+24=\left(x^3-2x^2\right)+\left(x^2-2x\right)-\left(12x-24\right)\)

                                                    \(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)

                                                    \(=\left(x-2\right)\left(x^2+x-12\right)\)

                                                    \(=\left(x-2\right)\left(x^2-3x+4x-12\right)\)

                                                    \(=\left(x-2\right)\left[x\left(x-3\right)+4\left(x-3\right)\right]\)

                                                    \(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)

2 tháng 7 2017

=x3(x+2)-13x2+12x-26x+24

=x3(x+2)-x(13x-12)-2(13x-12)

=x3(x+2)-(13x-12)(x+2)

=(x+2)(x3-x-12x+12)

(x+2)[(x2-1)-12(x-1)]

=(x+2)[x(x-1)(x+1)-12(x-1)]

=(x+2)(x-1)[x(x+1)-12]

=(x+2)(x-1)(x2+x-12)

=(x+2)(x-1)(x2-3x+4x-12)

=(x+2)(x-1)[x(x-3)+4(x+3)]

=(x+2)(x-1)(x-3)(x+4)

2 tháng 7 2017

trong bài làm của mk có hàng k có dấu "=" chỗ đó có dâu"=" nha!

16 tháng 2 2020

x^2 - 10x + 24

= x^2  - 4x - 6x + 24 

= x(x - 4) - 6(x - 4)

= (x - 6)(x - 4)

16 tháng 2 2020

ko vt lại đề

x2-6x-4x+24

=(x2-6x)-(4x-24)

=x(x-6)-4(x-6)

=(x-6)(x-4)

1 tháng 10 2021

\((x-1)(x-3)(x+8)\)

 

1 tháng 10 2021

\(x^3+4x^2-29x+24\)

\(=x^2\left(x+8\right)-4x\left(x+8\right)+3\left(x+8\right)\)

\(=\left(x+8\right)\left(x^2-4x+3\right)\)

\(=\left(x+8\right)\left[x\left(x-1\right)-3\left(x-1\right)\right]\)

\(=\left(x+8\right)\left(x-1\right)\left(x-3\right)\)

3 tháng 10 2019

\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)-24\)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)-24\)

\(=\left(x^2+3x\right)\left(x^2+3x\right)+2\left(x^2+3x\right)-24\)

\(=\left(x^2+3x\right)+2\left(x^2+3x\right)+1-25\)

\(=\left(x^2+3x+1\right)^2-5^2\)

\(=\left(x^2+3x+6\right)\left(x^2+3x-4\right)\)

3 tháng 10 2019

\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)-24\)

\(=x\left(x+3\right)\left(x+1\right)\left(x+2\right)-24\)

\(=\left(x^2+3x\right)\left(x^2+3x+6\right)-24\)(1)

Đặt \(x^2+3x+3=t\)thay vào (1) ta được 

\(\left(t-3\right)\left(t+3\right)-24\)

\(=t^2-9-24\)

\(=t^2-33\)

\(=\left(t-\sqrt{33}\right)\left(t+\sqrt{33}\right)\)(2)

Thay \(t=x^2+3x+3\)vào (2) ta được : 

\(\left(x^2+3x+3-\sqrt{33}\right)\left(x^2+3x+3+\sqrt{33}\right)\)