Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) nhận xét hệ số : 1 + 4 - 29 + 24 = 0
=> x3 + 4x2 - 29x + 24 = x2(x-1) + 5x(x-1) - 24(x-1)
= (x-1)(x2+5x-24) = (x-1)(x-3)(x+8)
b) ...
a) \(x^3+4x^2-29x+24\)=\(\left(x+8\right)\left(x^2-4x+3\right)\)=\(\left(x+8\right)\left(x^2-x-3x+3\right)\)=\(\left(x+8\right)\left(x-1\right)\left(x-3\right)\)
b) \(x^4+6x^3+7x^2-6x+1\)=\(x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1\)=\(x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\)=\(\left(x^2+3x-1\right)\left(x^2+3x-1\right)\)=\(\left(x^2+3x-1\right)^2\)
\(x^3+2x^2-29x-30=\left(x^3+x^2\right)+\left(x^2+x\right)-\left(30x+30\right)\)
\(=x^2\left(x+1\right)+x\left(x+1\right)-30\left(x+1\right)=\left(x+1\right)\left(x^2+x-30\right)\)
\(=\left(x+1\right)\left(x^2+6x-5x-30\right)=\left(x+1\right)\left[x\left(x+6\right)-5\left(x+6\right)\right]=\left(x+1\right)\left(x-5\right)\left(x+6\right)\)
a, \(x^3+4x^2-29x+24\)
\(=x^3-x^2+5x^2-5x-24x+24\)
\(=x^2\left(x-1\right)+5x\left(x-1\right)-24\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+5x-24\right)\)
\(=\left(x-1\right)\left[x\left(x-3\right)+8\left(x-3\right)\right]\)
\(=\left(x-1\right)\left(x-3\right)\left(x+8\right)\)
\(x^3+6x^2+11x+6\)
\(=x^3+x^2+5x^2+5x+6x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+5x+6\right)\)
\(=\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
Chúc bạn học tốt.
\(x^3-x^2-14x+24\)
\(=x^3-2x^2+x^2-2x-12x+24\)
\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x-12\right)\)
\(=\left(x-2\right)\left(x^2+4x-3x-12\right)\)
\(=\left(x-2\right)\left[x\left(x+4\right)-3\left(x+4\right)\right]\)
\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)
Ta có:\(x^3-x^2-14x+24=\left(x^3-2x^2\right)+\left(x^2-2x\right)-\left(12x-24\right)\)
\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x-12\right)\)
\(=\left(x-2\right)\left(x^2-3x+4x-12\right)\)
\(=\left(x-2\right)\left[x\left(x-3\right)+4\left(x-3\right)\right]\)
\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)
=x3(x+2)-13x2+12x-26x+24
=x3(x+2)-x(13x-12)-2(13x-12)
=x3(x+2)-(13x-12)(x+2)
=(x+2)(x3-x-12x+12)
(x+2)[(x2-1)-12(x-1)]
=(x+2)[x(x-1)(x+1)-12(x-1)]
=(x+2)(x-1)[x(x+1)-12]
=(x+2)(x-1)(x2+x-12)
=(x+2)(x-1)(x2-3x+4x-12)
=(x+2)(x-1)[x(x-3)+4(x+3)]
=(x+2)(x-1)(x-3)(x+4)
trong bài làm của mk có hàng k có dấu "=" chỗ đó có dâu"=" nha!
x^2 - 10x + 24
= x^2 - 4x - 6x + 24
= x(x - 4) - 6(x - 4)
= (x - 6)(x - 4)
\(x^3+4x^2-29x+24\)
\(=x^2\left(x+8\right)-4x\left(x+8\right)+3\left(x+8\right)\)
\(=\left(x+8\right)\left(x^2-4x+3\right)\)
\(=\left(x+8\right)\left[x\left(x-1\right)-3\left(x-1\right)\right]\)
\(=\left(x+8\right)\left(x-1\right)\left(x-3\right)\)
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)-24\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)-24\)
\(=\left(x^2+3x\right)\left(x^2+3x\right)+2\left(x^2+3x\right)-24\)
\(=\left(x^2+3x\right)+2\left(x^2+3x\right)+1-25\)
\(=\left(x^2+3x+1\right)^2-5^2\)
\(=\left(x^2+3x+6\right)\left(x^2+3x-4\right)\)
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)-24\)
\(=x\left(x+3\right)\left(x+1\right)\left(x+2\right)-24\)
\(=\left(x^2+3x\right)\left(x^2+3x+6\right)-24\)(1)
Đặt \(x^2+3x+3=t\)thay vào (1) ta được
\(\left(t-3\right)\left(t+3\right)-24\)
\(=t^2-9-24\)
\(=t^2-33\)
\(=\left(t-\sqrt{33}\right)\left(t+\sqrt{33}\right)\)(2)
Thay \(t=x^2+3x+3\)vào (2) ta được :
\(\left(x^2+3x+3-\sqrt{33}\right)\left(x^2+3x+3+\sqrt{33}\right)\)