K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

\(y\left(x-y\right)^2+xy\left(x-y\right)\)

\(=\left(xy-y^2\right)\left(x-y\right)+xy\left(x-y\right)\)

\(=\left(xy-y^2+xy\right)\left(x-y\right)\)

\(=\left(2xy-y^2\right)\left(x-y\right)\)

12 tháng 10 2019

y ( x - y)2 + xy ( x-y) = (x - y) [(x-y) y +xy]

= (x-y) ( 2xy -y2)

2 tháng 10 2016

=[xy(x+y)+xyz]+[yz(y+z)+xyz]+xz(x+z)

=xy(x+y+z)+yz(x+y+z)+xz(x+z)

=y(x+y+z)(x+z)+xz(x+z)

=(x+z)(xy+y2+yz+xz)

=(x+z)(x+y)(y+z)

3 tháng 10 2016

Thanks

10 tháng 11 2017

= xyx + xyy - yzy + yzz - zx( z - x ) 

= y( x^2 + xy ) - y( zy + zz ) - zx( z - x ) 

= y[ ( x^2 + xy ) - ( zy + zz ) ] - zx( z - x ) 

= y( x^2 + xy - zy - zz ) - zx( z - x ) 

= y[ x( x + y ) - z( y - z ) ] - zx( z - x ) 

P/S : bí rùi . ngu phần này lắm . 

10 tháng 11 2017

xy x dc goi la một đương f thẳng nên nó sẻ dc goi 

9 tháng 10 2019

Đặt x^2+y^2+z^2 =a ; xy+yz+zx=b

=> (x+y+z)^2 =x^2+y^2+z^2+2xy+2yz+2zx =a+2b

Ta có A= (x^2+y^2+z^2)(xy+yz+zx) +(x+y+z)^2

= a(a+2b)+b^2=a^2+2ab+b^2=(a+b)^2

=(x^2+y^2+z^2 +xy+yz+zx)^2