K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2015

đặt y=x2+4x+8 ta được

y2+3xy+2x2=y2+xy+2xy+2x2=y(y+x)+2x(y+x)

=(y+x)(y+2x)

thay y=x2+4x+8 ta được

(x2+5x+8)(x2+7x+8)

21 tháng 8 2017

=(x^2+4x+8)2+2x(x^2+4x+8)+(x^2+4x+8)+2x^2

=(x^2+5x+8)(x^2+6x+8)

9 tháng 10 2016

\(\left(2x-y\right)\left(x-y\right)-\left(3y-4x\right)^2+\left(y-2x\right)\left(2y-3x\right)\)

=(2x-y)(x-y)-(2x-y)(2y-3x)-(4x-3y)2

=(2x-3y)(x-y-2y+3x)-(4x-3y)2

=(2x-3y)(4x-3y)-(4x-3y)2

=(4x-3y)(2x-3y-4x+3y)

=(4x-3y))(-2x)

18 tháng 11 2018

\(4x^4+4x^3+5x^2+6x+1\)

\(=4x^4+4x^3+5x^2+5x+x+1\)

\(=4x^3.\left(x+1\right)+5x.\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right).\left(4x+5x+1\right)\)

p/s: tớ nghĩ sai đề nên đổi ạ :))

4 tháng 8 2016

d)\(\left(x^2+y^2-z^2\right)^2-4x^2y^2\)

\(=\left(x^2+y^2-z^2+2xy\right)\left(x^2+y^2-z^2-2xy\right)\)

\(=\left[\left(x^2+2xy+y^2\right)-z^2\right]\left[\left(x^2-2xy+y^2\right)-z^2\right]\)

\(=\left[\left(x+y\right)^2-z^2\right]\left[\left(x-y\right)^2-z^2\right]\)

\(=\left(x+y-z\right)\left(x+y+z\right)\left(x-y-z\right)\left(x-y+z\right)\)

e)Đặt \(x^2+3x=a\)

Có: \(\left(x^2+3x+1\right)\left(x^2+3x-3\right)-5\)

\(=\left(a+1\right)\left(a-3\right)-5\)

\(=a^2-3a+a-3-5\)

\(=a^2-2a-8\)

\(=a^2+2x-4x-8\)

\(=a\left(a+2\right)-4\left(a+2\right)\)

\(=\left(a+2\right)\left(a-4\right)\)

\(=\left(x^2+3x+2\right)\left(x^2+3x-4\right)\)

\(=\left(x^2+x+2x+2\right)\left(x^2-x+4x-4\right)\)

\(=\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x-1\right)+4\left(x-1\right)\right]\)

\(=\left(x+1\right)\left(x+2\right)\left(x-1\right)\left(x+4\right)\)

4 tháng 8 2016

\(d,\left(x^2+y^2-z^2\right)^2-4x^2y^2\)
\(=\left(x^2+y^2-z^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2+y^2-z^2-2xy\right)\left(x^2+y^2-z^2+2xy\right)\)
\(=\left[\left(x^2-2xy+y^2\right)-z^2\right]\left[\left(x^2+2xy+y^2\right)-z^z\right]\)
\(=\left[\left(x-y\right)^2-z^2\right]\left[\left(x+y\right)^2-z^2\right]\)
\(=\left(x-y-z\right)\left(x-y+z\right)\left(x+y-z\right)\left(x+y+z\right)\)
\(e,\left(x^2+3x+1\right)\left(x^2+3x-3\right)-5\left(1\right)\)
\(\text{Đặt }x^2+3x+\frac{1-3}{2}=t\)
\(\text{hay }x^2+3x-2=t\left(2\right)\)
\(\left(1\right)\Leftrightarrow\left(t+3\right)\left(t-1\right)-5\)
\(\Rightarrow t^2-t+3t-3-5\)
\(=t^2+2t-8\)
\(=t^2-2t+4t-8\)
\(=t\left(t-2\right)+4\left(t-2\right)\)
\(=\left(t-2\right)\left(t+4\right)\left(3\right)\)
\(\text{Thay (2) vào (3),ta được:}\)
\(\left(x^2+3x-2-2\right)\left(x^2+3x-2+4\right)\)
\(=\left(x^2+3x-4\right)\left(x^2+3x+2\right)\)

\(=\left(x^2-x+4x-4\right)\left(x^2+x+2x+2\right)\)
\(=\left[x\left(x-1\right)+4\left(x-1\right)\right]\left[x\left(x+1\right)+2\left(x+1\right)\right]\)

\(=\left(x-1\right)\left(x+4\right)\left(x+1\right)\left(x+2\right)\)