K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

\(b,y^2\left(x^2+y\right)-x^2z-yz\)

\(=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(y^2-z\right)\left(x^2+y\right)\)

\(c,3x\left(x+1\right)^2-5x^2\left(x+1\right)+7x+7\)

\(=3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)

\(=\left(x+1\right)\left[3x\left(x+1\right)-5x^2+7\right]\)

\(=\left(x+1\right)\left(3x-2x^2+7\right)\)

\(d,x^3-27+x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+3x+9\right)+x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+4x+9\right)\)

16 tháng 7 2017

a) ko bk lam ak

18 tháng 6 2015

a)5x2y-10xy2

=5xy(x-2y)

b,:4x(2y-z)+7y(z-2y)

=4x(2y-z)-7y(2y-z)

=(2y-z)(4x-7y)

c,:y(x-z)+7(z-x)

=y(x-z)-7(x-z)

=(x-z)(y-7)

d)36-12x+x^2​

=x2-2.x.6+62

=(x-6)2

e) (x-5)^2-16

=(x-5)2-42

=(x-5-4)(x-5+4)

=(x-9)(x-1)

f) ​8x^3+1/27

=(2x)3+(1/3)3

=(2x+1/3)(4x2+2/3.x+1/9)

6 tháng 12 2017

a) \(=\left(x-2y\right)\left(x^2+5x\right)\)

b) \(=\left(x-1\right)\left(x^2+2x+1\right)=\left(x-1\right)\left(x+1\right)^2\)

c) \(=\left(x^2+1-2x\right)\left(x^2+1+2x\right)\)

    \(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)\)

    \(=\left(x-1\right)^2\left(x+1\right)^2\)

d) \(=3\left(x+3\right)-\left(x-3\right)\left(x+3\right)\)

     \(=\left(x+3\right)\left(3-x+3\right)\)

     \(=\left(x+3\right)\left(6-x\right)\)

e) \(=\left(x^2-\frac{1}{3}x\right)\left(x^2+\frac{1}{3}x\right)\)

f) \(=2x\left(x-y\right)-16\left(x-y\right)\)

    \(=2\left(x-y\right)\left(x-8\right)\)

  

11 tháng 10 2015

a)=x2-5x-2x+10=x(x-5)-2(x-5)=(x-5)(x-2)

b)=4x2-4x+x-1=4x(x-1)+(x-1)=(x-1)(4x+1)

c)=x2-4x+3x-12=x(x-4)+3(x-4)=(x-4)(x+3)

 

 

 

b: \(=x\left(x^3+x^2+2\right)\)

c: \(=x^4-2x^2+1-x^2\)

\(=\left(x^2-1\right)^2-x^2\)

\(=\left(x^2-x-1\right)\left(x^2+x-1\right)\)

d: \(=4x\left(x-2y\right)+8y\left(2y-x\right)\)

\(=\left(x-2y\right)\left(4x-8y\right)\)

\(=4\left(x-2y\right)^2\)

e: \(=3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)

\(=\left(x+1\right)\left[3x\left(x+1\right)-5x^2+7\right]\)

\(=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)\)

\(=\left(x+1\right)\left(-2x^2+3x+7\right)\)

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)