K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2019

a) \(M=a\left(b+c\right)^2+b\left(a^2+c^2\right)+c\left(a^2+b^2\right)\)

\(M=a\left(b+c\right)^2+a^2b+c^2b+a^2c+b^2c\)

\(M=a\left(b+c\right)^2+a^2\left(b+c\right)+bc\left(b+c\right)\)

\(M=a.0^2+a^2.0+bc.0=0\left(đpcm\right)\)

b)\(M=a\left(b+c\right)^2+a^2\left(b+c\right)+bc\left(b+c\right)\)

\(M=\left(b+c\right)\left(ab+ac+a^2+bc\right)\)

\(M=\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]\)

\(M=\left(b+c\right)\left(a+c\right)\left(a+b\right)\)

1 tháng 10 2016

Gọi P là biểu thức phải phân tích, ta có 
P = a(b + c)^2(b - c) + b(c + a)^2(c - a) - c(a + b)^2[(b - c) + (c - a)] 
= a(b + c)^2(b - c) + b(c + a)^2(c - a) - c(a + b)^2(b - c) - c(a + b)^2(c - a) 
= [a(b + c)^2(b - c) - c(a + b)^2(b - c)]+ [b(c + a)^2(c - a) - c(a + b)^2(c - a)] 
= (b - c)[a(b + c)^2 - c(a + b)^2] + (c - a)[b(c + a)^2 - c(a + b)^2] 
= (b - c)(ab^2 + ac^2 - ca^2 - cb^2) + (c - a)(bc^2 + ba^2 - ca^2 - cb^2) 
= (b - c)[ac(c - a) - b^2(c - a)] + (c - a)[a^2(b - c) - bc(b - c)] 
= (b - c)(c - a)(ac - b^2) + (c - a)(b - c)(a^2 - bc) 
= (b - c)(c - a)(ac - b^2 + a^2 - bc) 
= (b - c)(c - a)[(a^2 - b^2) + (ac - bc)] 
= (b - c)(c - a)[(a - b)(a + b) + c(a - b)] 
= (b - c)(c - a)(a - b)(a + b + c) 
= (a - b)(b - c)(c - a)(a + b + c). 
Vậy P = (a - b)(b - c)(c - a)(a + b + c).

28 tháng 6 2016

a(b+c)2(b-c)+b(c+a)2(c-a)+c(a+b)2(a-b)

=(-a)c3-abc2+ab2c+ab3+bc3+abc2+(-a2)bc+(-a3)b+(-b3)c-ab2c+a2bc+a3c

=(b-a)c3+(a3-b3)c+ab3+(-a3)b

=(b-a)(c-a)(c-b)(c+b+a)

28 tháng 6 2016

cách khác dễ hiểu hơn chỉ cần thay a,b,c =x,y,z

(x-y)3+(y-z)3+(z-x)3

=(x-y+y-z)[(x-y)2-(x-y)(y-z)+(y-z)2]+(z-x)3

=(x-z)[(x-y)2-(x-y)(y-z)+(y-z)2-(z-x)2]

=(x-z)[(x-y)(x-y-y+z)+(y-z+z-x)(y-z-z+x)]

=(x-z)(x-y)(x-2y+z-y+2z-x)

=3(x-z)(x-y)(z-y)

2 tháng 2 2018

            \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)

\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left(a^2-b^2\right)-\left(b+c\right)\left(c^2-a^2\right)+\left(a+c\right)\left(c^2-a^2\right)\)

\(=\left(a^2-b^2\right)\left(a+b-b-c\right)-\left(c^2-a^2\right)\left(b+c-c-a\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(a-c\right)-\left(c-a\right)\left(c+a\right)\left(b-a\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(a+b-c-a\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

8 tháng 9 2019

\(x^2-y^2+4x+4\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

\(4x^2-y^2+8\left(y-2\right)\)

\(=4x^2-\left(y^2-8y+16\right)\)

\(=4x^2-\left(y-4\right)^2\)

\(=\left(2x+y-4\right)\left(2x-y+4\right)\)

24 tháng 7 2020

Biến đổi: (c-a) thành: -[(b-c)+(a-b)]

Thấy xuất hiện nhân tử chung r thì ... phân tích tiếp, ko khó lắm.

24 tháng 7 2020

\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)

\(=\left(b-c\right)\left[a\left(b+c\right)^2-b\left(c+a\right)^2\right]-\left(a-b\right)\left[b\left(c+a\right)^2-c\left(a+b\right)^2\right]\)

\(=\left(b-c\right)\left(ab^2+ac^2-bc^2-ba^2\right)-\left(a-b\right)\left(bc^2+ba^2-ca^2-ab^2\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(c^2-ab\right)-\left(a-b\right)\left(b-c\right)\left(a^2-bc\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(c^2-ab-a^2+bc\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

22 tháng 2 2020

\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2+8abc\)

\(=a\left(b^2-2bc+c^2\right)+b\left(c^2-2ac+a^2\right)+c\left(a^2-2ab+b^2\right)+8abc\)

\(=ab^2-2abc+ac^2+bc^2-2abc+ba^2+ca^2-2abc+cb^2+8abc\)

\(=ab^2+ac^2+bc^2+ba^2+ca^2+cb^2+2abc\)

\(=\left(ac^2+bc^2\right)+\left(ab^2+ba^2\right)+\left(ca^2+cb^2+2abc\right)\)

\(=c^2\left(a+b\right)+ab\left(a+b\right)+c\left(a^2+b^2+2ab\right)\)

\(=c^2\left(a+b\right)+ab\left(a+b\right)+c\left(a+b\right)^2\)

\(=\left(a+b\right)\left[c^2+ab+c\left(a+b\right)\right]=\left(a+b\right)\left(c^2+ab+ca+bc\right)\)

\(=\left(a+b\right)\left[\left(c^2+ca\right)+\left(ab+bc\right)\right]=\left(a+b\right)\left[c\left(c+a\right)+b\left(a+c\right)\right]\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)