Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(64x^3+1=\left(4x+1\right)\left(16x^2-4x+1\right)\)\
c) \(x^3y^6z^9-125=\left(xy^2z^3-5\right)\left(x^2y^4z^6+5xy^2z+25\right)\)
d) \(27x^6-8x^3=x^3\left(27x^3-8\right)=x^3\left(3x-2\right)\left(9x^2+6x+4\right)\)
e) \(x^6-y^6=\left(x^3-y^3\right)\left(x^3+y^3\right)=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
64x3 + 1
= ( 4x )3 + 1
= ( 4x + 1 ) ( 16x2 - 4x + 1 )
Hằng đẳng thức 6 : A3 + B3
27x6 - 8x3
= ( 3x2)3 + ( 2x )3
= ( 3x + 2x ) ( 9x2 - 6x + 4x2 )
HĐT 6
x6 - y6
= ( x2 )3 - ( y2 )3
= ( x2 - y2 ) ( x4 + x2y2 + y4 )
HĐT 7 : A3 - B3
x3y6z9 + 1
= ( xy2z3)3 + 1
= ( xy2z3 + 1 ) ( x2y4z6 + zy2z3 + 1 )
HĐT 6
a) \(9\left(a+b\right)^2-4\left(a-2b\right)^2\)
\(=\left(3a+3b\right)^2-\left(2a-4b\right)^2\)
\(=\left(3a+3b-2a+4b\right)\left(3a+3b+2a-4b\right)\)
\(=\left(a+7b\right)\left(5a-b\right)\)
b) \(9x^6-12x^7+4x^8\)
\(=x^6\left(9-12x+4x^2\right)\)
\(=x^6\left(2x-3\right)^2\)
c) \(8x^6-27y^3\)
\(=\left(2x^2\right)^3-\left(3y\right)^3\)
\(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)
d) \(\frac{1}{64}x^6-125y^3\)
\(=\left(\frac{1}{4}x^2\right)^3-\left(5y\right)^3\)
\(=\left(\frac{1}{4}x^2-5y\right)\left(\frac{1}{16}x^4+\frac{5}{6}xy+25y^2\right)\)
8x3- 125= (2x)3- 53= (2x-5)[(2x)2+2x5+52 ]=(2x-5)(4x2+10x+25)
1) \(x^6+1\)
\(=x^6+x^4-x^4+x^2-x^2+1\)
\(=\left(x^6-x^4+x^2\right)+\left(x^4-x^2+1\right)\)
\(=x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
2) \(x^6-y^6\)
\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
a) \(x^2+4x+3=\left(x^2+4x+4\right)-1=\left(x+2\right)^2-1^2=\left(x+1\right)\left(x+3\right)\) (mình sửa lại)
b) \(x^2+8x-9=\left(x^2+8x+16\right)-25=\left(x+4\right)^2-5^2=\left(x-1\right)\left(x+9\right)\)
c) \(3x^2+6x-9=3\left[\left(x^2+2x+1\right)-4\right]=3\left[\left(x+1\right)^2-2^2\right]=3\left(x-1\right)\left(x+3\right)\)
d) \(2x^2+x-3=2x^2-4x+2+5x-5=2\left(x^2-2x+1\right)+5\left(x-1\right)=2\left(x-1\right)^2+5\left(x-1\right)=\left(x-1\right)\left(2x+3\right)\)
bài 1: a) \(x^2-3=x^2-\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)\)
b) \(\left(a+b\right)^2-\left(a+b\right)^2=\left(a+b+a+b\right)\left(a+b-a-b\right)=2a+2b=2\left(a+b\right)\)
c) \(x^3-27b^3=\left(x-3b\right)\left(x^2+3xb+b^2\right)\)
a) \(8x^3-27y^6\)
\(=\left(2x\right)^3-\left(3y^2\right)^3\)
\(=\left(2x-3y^2\right)\left[\left(2x\right)^2+2x.3y+\left(3y\right)^2\right]\)
\(=\left(2x-3y^2\right)\left(4x^2+6xy+9y^2\right)\)
b) \(a^3b^3c^3-1\)
\(=\left(abc\right)^3-1^3\)
\(=\left(abc-1\right)\left(a^2b^2c^2+abc+1\right)\)
c) \(64x^3+\dfrac{1}{8}y^3\)
\(=\left(4x\right)^3+\left(\dfrac{1}{2}y\right)^3\)
\(=\left(4x+\dfrac{1}{2}y\right)\left[\left(4x\right)^2+4x.\dfrac{1}{2}y+\left(\dfrac{1}{2}y\right)^2\right]\)
\(=\left(4x+\dfrac{1}{2}y\right)\left(4x^2+2xy+\dfrac{1}{4}y^2\right)\)
d) \(125+y^3\)
\(=5^3+y^3\)
\(=\left(5+y\right)\left(25-5y+y^2\right)\)
e) \(a^6-b^6\)
\(=\left(a^3\right)^2-\left(b^3\right)^2\)
\(=\left(a^3-b^3\right)\left(a^3+b^3\right)\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)\left(a+b\right)\left(a^2-ab+b^2\right)\)
f) \(4x^2-9\left(3x+5\right)^2\)
\(=\left(2x\right)^2-\left[3\left(3x+5\right)\right]^2\)
\(=\left[2x-3\left(3x+5\right)\right]\left[2x+3\left(3x+5\right)\right]\)
\(=\left(2x-9x-15\right)\left(2x+9x+15\right)\)
\(=\left(-7x-15\right)\left(11x+15\right)\)