K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2021

a, \(\left(x-y\right)\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(x-y-4\right)\)

b, \(\left(x-\dfrac{7}{2}\right)\left(x+1\right)\)

18 tháng 10 2021

1.A

2.C

3.B

4.C

15 tháng 12 2021

a

c

b

c

30 tháng 7 2021

a) `x^4+2x^3-4x-4`

`=(x^4-4)+(2x^3-4x)`

`=(x^2-2)(x^2+2)+2x(x^2-2)`

`=(x^2-2)(x^2+2+2x)`

b) `x^3-4x^2+12x-27`

`=(x^3-27)-(4x^2-12x)`

`=(x-3)(x^2+3x+9)-4x(x-3)`

`=(x-3)(x^2+3x+9-4x)`

`=(x-3)(x^2-x+9)`

c) `xy-4y-5x+20`

`=y(x-4)-5(x-4)`

`=(y-5)(x-4)`

a) Ta có: \(x^4+2x^3-4x-4\)

\(=\left(x^4-4\right)+2x^3-4x\)

\(=\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)

\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)

b) Ta có: \(x^3-4x^2+12x-27\)

\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\cdot\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

c) Ta có: \(xy-4y-5x+20\)

\(=y\left(x-4\right)-5\left(x-4\right)\)

\(=\left(x-4\right)\left(y-5\right)\)

1 tháng 11 2015

1.\(5\left(x^2-9y^2-6y-1\right)=5.\left[x^2-\left(9y^2+6y+1\right)\right]=5\left[x^2-\left(3y+1\right)^2\right]=5\left(x+3y+1\right)\left(x-3y-1\right)\)

2.kiểm tra lại đề nha bạn

3.\(4x^2+10x-2x-5=2x\left(2x-1\right)+5\left(2x-1\right)=\left(2x-1\right)\left(2x+5\right)\)

15 tháng 7 2016

a)x^2-(a+b)x+ab

= x^2 - ax - bx + ab

= (x^2 - ax) - (bx - ab)

= x(x-a) - b(x-a)

= (x-b)(x-a) 

b)7x^3-3xyz-21x^2+9z

c)4x+4y-x^2(x+y)

= 4(x + y) - x^2(x+y)

= (4-x^2) (x+y)

= (2-x)(2+x)(x+y)

d) y^2+y-x^2+x

= (y^2 - x^2) + (x+y)

= (y-x)(y+x)+ (x+y)

= (y-x+1) (x+y)

e)4x^2-2x-y^2-y

= [(2x)^2 - y^2] - (2x +y)

= (2x-y)(2x+y) - (2x+y)

= (2x -y -1)(2x+y)

f)9x^2-25y^2-6x+10y

31 tháng 8 2021

ko biết làm

 

a) 2x(y-z)-6y(z-y)

=2x(y-z)+6y(y-z)

=2(y-z)(x+3y)
b)x^2+4x-4y-y^2

=x^2-y^2+4x-4y

=(x-y)(x+y)+4(x-y)

=(x-y)(x+y+4)

P/s tham khảo nha

2 tháng 11 2017

a)  = 2x(y-z)-6y(y-z)

= 2(y-z)(x-3y)

b)  = 

4 tháng 11 2021

a) \(x-xy+y-y^2=x\left(1-y\right)+y\left(1-y\right)=\left(x+y\right)\left(1-y\right)\)

b) \(x^2-2x-y^2+1=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)

c) \(4x^2-4xy+y^2=\left(2x\right)^2-2.2x.y+y^2=\left(2x-y\right)^2\)

d) \(9x^3-9x^2y-4x+4y=9x^2\left(x-y\right)-4\left(x-y\right)=\left(9x^2-4\right)\left(x-y\right)=\left(3x-2\right)\left(3x+2\right)\left(x-y\right)\)

e) \(x^3+2+3\left(x^3-2\right)=x^3+2+3x^3-6=4x^3-4=4\left(x^3-1\right)=4\left(x-1\right)\left(x^2+x+1\right)\)

24 tháng 8 2017

  Đổi dấu  – (4yx2 + yz2)(z – y2) = (4yx2 + yz2)( y2 – z), ta có thừa số

(y2 – z) chung:

        C  = (y2 – z)(2x2y – yz) – (4yx2 + yz2)(z – y2) + 6x2z(y2 – z)

              = (y2 – z)(2x2y – yz) + (4yx2 + yz2)( y2 – z) + 6x2z(y2 – z)

            = (y2 – z)[( 2x2y – yz ) + (4yx2 + yz2) + 6x2z]

              = (y2 – z)[ 2x2y + 4yx2  + 6x2z]

            = (y2 – z)[ 2xy2 + 4yx2  + 6x2z]

            = (y2 – z)[ 2x2(y + 2y  + 3z)]

            = (y2 – z)[ 2x2(3y  + 3z)]

            = (y2 – z) 2x2 .3(y + z)

            = 6x2(y2 – z)(y + z).

a) 7x2 - 4x 

= x ( 7x - 4 )

b) 5x2 - 2x + 10 xy - 4y

= x ( 5x - 2 ) + 2y ( 5x - 2 )

= ( x + 2y ) ( 5x - 2 )

24 tháng 8 2017

Ta nhân thấy nghiệm của f(x) nếu có thì x = , chỉ có f(2) = 0 nên x = 2 là nghiệm  của f(x) nên f(x) có một nhân tử là x – 2. Do đó ta  tách f(x) thành các nhóm có xuất hiện một nhân tử là x – 2

Cách 1:

x3 – x2 – 4 =(x3-2x2)+(x2-2x)+(2x-4)=x2(x-2)+x(x-2)+2(x-2)=(x-2)(x2+x+2)

Cách 2:

(x-2)[(x2+2x+4)-(x+2)]=(x-2)(x2+x+2)

x3-x2-4=x3-8-x2+4=(x3-8)-(x2-4)=(x-2)(x2+2x+4)-(x-2)(x+2)