K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2023

(x + 2y)² - (x - y)²

= (x + 2y - x + y)(x + 2y + x - y)

= 3y(2x + y)

16 tháng 7 2023

\(\left(x+2y\right)^2-\left(x-y\right)^2\)

\(=\left[\left(x+2y\right)-\left(x-y\right)\right]\left[\left(x+2y\right)+\left(x-y\right)\right]\)

\(=\left(x+2y-x+y\right)\left(x+2y+x-y\right)\)

\(=3y\left(2x+y\right)\)

15 tháng 9 2018

    \(\left(x^2-5\right)^2+144\)

\(=x^4-10x^2+25+144\)

\(=x^4-10x^2+169\)

\(=x^4+26x^2+169-36x^2\)

\(=\left(x^2+13\right)^2-\left(6x\right)^2\)

\(=\left(x^2-6x+13\right)\left(x^2+6x+13\right)\)

12 tháng 10 2021

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

28 tháng 11 2021
Lol .ngudoots
6 tháng 11 2021

\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

28 tháng 3 2021

Đặt \(A=x^4-2y^4-x^2y^2+x^2+y^2\)

\(\Rightarrow2A=2x^4-4y^4-2x^2y^2+2x^2+2y^2\)

\(\Rightarrow2A=\left(x^4+2x^2+1\right)-\left(y^4-2y^2+1\right)\)\(+\left(x^4-2x^2y^2+y^4\right)-4y^4\)

\(\Rightarrow2A=\left(x^2+1\right)^2-\left(y^2-1\right)^2+\left(x^2-y^2\right)^2-4y^4\)

\(\Rightarrow2A=\left[\left(x^2+1\right)^2-4y^4\right]+\left[\left(x^2-y^2\right)^2-\left(y^2-1\right)^2\right]\)

\(\Rightarrow2A=\left(x^2+1-2y^2\right)\left(x^2+1+2y^2\right)+\)\(\left(x^2-y^2+y^2-1\right)\left(x^2-y^2-y^2+1\right)\)

\(\Rightarrow2A=\left(x^2+1-2y^2\right)\left(x^2+1+2y^2\right)+\)\(\left(x^2-1\right)\left(x^2+1-2y^2\right)\)

\(\Rightarrow2A=\left(x^2+1-2y^2\right)\left(x^2+1+2y^2+x^2-1\right)\)

\(\Rightarrow2A=\left(x^2-2y^2+1\right)\left(2x^2+2y^2\right)\)

\(\Rightarrow2A=2\left(x^2-2y^2+1\right)\left(x^2+y^2\right)\)

\(\Rightarrow A=\left(x^2-y^2+1\right)\left(x^2+y^2\right)\)

28 tháng 3 2021

Nhầm, tớ chốt lại: \(A=\left(x^2-2y^2+1\right)\left(x^2+y^2\right)\), đừng xem cái câu cuối ở tin 1, sai đấy.

20 tháng 7 2018

sao lại là x^2y

20 tháng 7 2018

nghĩa là x^2 nhân với y

19 tháng 7 2018

\(x^3-x^{22}-xy^2+y^2\)

\(=x^2\left(x-1\right)-y^2\left(x-1\right)\)

\(=\left(x^2-y^2\right)\left(x-1\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x-1\right)\)

19 tháng 7 2018

\(x^3-x^2y-xy^2+y^3\)

\(=\left(x^3-x^2y\right)-\left(xy^2-y^3\right)\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x^2-y^2\right)\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x-y\right)\)

\(=\left(x-y\right)^2.\left(x+y\right)\)