\(f,x^3+3x^2+6x+4\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

\(f, x^3+3x^2+6x+4\)

\(=x^3+x^2+2x^2+2x+4x+4\)

\(=x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+2x+4\right)\)

\(g, x^3-5x^2+8x-4\)

\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-4x+4\right)\)

\(=\left(x-1\right)\left(x-2\right)^2\)

29 tháng 9 2018

\(f,x^3+3x^2+6x+4=x^3+x^2+2x^2+2x+4x+4\)

                                         \(=x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)

                                          \(=\left(x+1\right)\left(x^2+2x+4\right)\)

\(g,x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4\)

                                            \(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

                                            \(=\left(x-1\right)\left(x^2-4x+4\right)\)

                                             \(=\left(x-1\right)\left(x-2\right)^2\)

18 tháng 8 2017

x+ 7x - 6=x2 . x + 7x - 22 + 2 = (x2 - 22) + (x+7x)+2=(x-2) . (x+2) + 8x + 2

x3 - 5x + 8x - 4=x2 . x -5x + 8x -22 = (x2 - 22) . (x -5x + 8x )=(x-2) . (x+2) . 4x

x3 - 9x2 + 6x + 16=x2 . x - 9x2 + 6x + 16 = (x- 9x2) . (x+6x) + 16=(x-9x) . (x+9x) . 7x + 16

k mk nha

a, 25-x2+4xy-4y2 

= 25-(x2-4xy+4y2

= 52-(x-2y)2 

= (5-x+2y)(5+x-2y)   

Các biểu thức sau bạn tự chứng minh nhé

10 tháng 10 2018

a) \(x^2-6x+8\)

\(=x^2-2\cdot x\cdot3+3^2-1\)

\(=\left(x-3\right)^2-1^2\)

\(=\left(x-3-1\right)\left(x-3+1\right)\)

\(=\left(x-4\right)\left(x-2\right)\)

Còn lại tương tự

a) \(x^2-6x+8=x^2-2x-4x+8\)                     

\(=\left(x^2-2x\right)-\left(4x-8\right)\)

=x(x-2)-4(x-2) = (x-2)(x-4)

20 tháng 8 2018

\(x^4+6x^3+12x^2+8x\)

\(=x\left(x^3+6x^2+12x+8\right)\)

\(=x\left(x+2\right)^3\)

20 tháng 8 2018

8x + 12x2 + 6x3 + x4

= x4 + 6x3 + 12x2 + 8x

= x(x3 + 6x2 + 12x + 8)

= x ( x + 2 ) 3

10 tháng 10 2017

******************************************************

a) \(x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4\)

\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)

b) \(x^3-3x+2=x^3+2x^2-2x^2-4x+x+2\)

\(=x^2\left(x+2\right)-2x\left(x+2\right)+\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-2x+1\right)=\left(x+2\right)\left(x-1\right)^2\)

c) \(x^3-5x^2+3x+9=x^3+x^2-6x^2-6x+9x+9\)

\(=x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-6x+9\right)=\left(x+1\right)\left(x-3\right)^2\)

d) \(x^3+8x^2+17x+10=x^3+2x^2+6x^2+12x+5x+10\)

\(=x^2\left(x+2\right)+6x\left(x+2\right)+5\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+6x+5\right)=\left(x+2\right)\left(x+5\right)\left(x+1\right)\)

e) \(x^3+3x^2+6x+4=x^3+x^2+2x^2+2x+4x+4\)

\(=x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+2x+4\right)\)

f) \(x^3+3x^2+3x+2=x^3+2x^2+x^2+2x+x+2\)

\(=x^2\left(x+2\right)+x\left(x+2\right)+\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+x+1\right)\)

10 tháng 7 2019

\(g,x^2-2xy+y^2-9z^2=\left(x-y\right)^2-\left(3z\right)^2\)\(=\left(x-y+3z\right)\left(x-y-3z\right)\)

\(h,5x^4-20x^2=5x^2\left(x^2-4\right)=5x^2\left(x-2\right)\left(x+2\right)\)

\(i,7x^2-7y^2-14x+14y=7\left(x-y\right)\left(x+y\right)-14\left(x-y\right)\)

\(=\left(x-y\right)\left(7x+7y-14\right)=7\left(x-y\right)\left(x+y-2\right)\)

\(k,x^2+8x+3x+24=x\left(x+8\right)+3\left(x+8\right)=\left(x+8\right)\left(x+3\right)\)

\(m,x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(n,x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)\)