\(6x^2+13x+5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

\(=6x^2+3x+10x+5=3x\left(2x+1\right)+5\left(2x+1\right)=\left(3x+5\right)\left(2x+1\right)\)

17 tháng 10 2021

6x2+3x+10x+5=3x(2x+1)+5(2x+1)=(3x+5)(2x+1)

29 tháng 7 2020

Bài làm:

a) \(x^2-6x+4=\left(x^2-6x+9\right)-5=\left(x-3\right)^2-\left(\sqrt{5}\right)^2\)

\(=\left(x-3-\sqrt{5}\right)\left(x-3+\sqrt{5}\right)\)

b) \(x^2-4x+3=x^2-x-3x+3=\left(x-1\right)\left(x-3\right)\)

c) \(6x^2-5x+1=6x^2-3x-2x+1=\left(2x-1\right)\left(3x-1\right)\)

d) \(3x^2+13x-10=3x^2+15x-2x-10=\left(x-5\right)\left(3x-2\right)\)

26 tháng 7 2018

b/ (x + 1)(x + 5)

c/ (x - 5)(x - 2)

26 tháng 7 2018

\(b,x^2+6x+5=x^2+x+5x+5=x\left(x+1\right)+5\left(x+1\right)=\left(x+1\right)\left(x+5\right)\)

\(c,x^2-7x+10=x^2-2x-5x+10=x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(x-5\right)\)

26 tháng 7 2018

f) \(x^2-6x+5=\left(x^2-x\right)+\left(-5x+5\right)=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)

g) \(x^4+64=\left(x^2+4x+8\right)\left(x^2-4x+8\right)\)

26 tháng 7 2018

\(x^2-6x+5\)

\(=\left(x^2-2.3x+3^2\right)-4\)

\(=\left(x-3\right)^2-2^2\)

\(=\left(x-3-2\right)\left(x-3+2\right)\)

\(=\left(x-5\right)\left(x-1\right)\)

31 tháng 7 2018

\(4x^3-13x^2+9x-18 \)

\(=4x^2\left(x-3\right)-x\left(x-3\right)+6\left(x-3\right)\)

\(=\left(x-3\right)\left(4x^2-x+6\right)\)

2 tháng 7 2017

=x3(x+2)-13x2+12x-26x+24

=x3(x+2)-x(13x-12)-2(13x-12)

=x3(x+2)-(13x-12)(x+2)

=(x+2)(x3-x-12x+12)

(x+2)[(x2-1)-12(x-1)]

=(x+2)[x(x-1)(x+1)-12(x-1)]

=(x+2)(x-1)[x(x+1)-12]

=(x+2)(x-1)(x2+x-12)

=(x+2)(x-1)(x2-3x+4x-12)

=(x+2)(x-1)[x(x-3)+4(x+3)]

=(x+2)(x-1)(x-3)(x+4)

2 tháng 7 2017

trong bài làm của mk có hàng k có dấu "=" chỗ đó có dâu"=" nha!

25 tháng 9 2016

= x^2 - x - 5x +25 = x(x-1) - 5(x-1) = (x-5)(x-1)

9 tháng 10 2016

\(6x^3+x^2-2x\)

=>\(x\left(6x^2+x-2\right)\)

6 tháng 1 2018

Ta có (6x+5)2(3x+2)(x+1)-35

= (36x2+60x+25)(3x2+5x+2)-35 (1)

Đặt a=3x2+5x+2

=> 12a+1= 12(3x2+5x+2)+1 =36x2+60x+25

Thay a=3x2+5x+2 vào (1) ta được

(12a+1).a-35=12a2+a-35

= 12a2-20a+21a-35

= 4a(3a-5)+7(3a-5)

= (3a-5)(4a+7) (2)

Thay 3x2+5x+2=a vào (2) ta được

(9x2+15x+6-5)(12x2+20x+8+7)

= (9x2+15x+1)(12x2+20x+15)

Ta có: \(\left(6x+5\right)^2\left(3x+2\right)\left(x+1\right)-35\)

\(=\left(36x^2+60x+25\right)\left(3x^2+5x+2\right)-35\)(1)

Đặt \(3x^2+5x+2=y\)

\(\left(1\right)=\left(12y+1\right)y-35\)

\(=12y^2+y-35\)

\(=\left(3y-5\right)\left(4y+7\right)\)

\(=\left(9x^2+15x+1\right)\left(12x^2+20x+15\right)\)

14 tháng 3 2019

\(x^4+13x^2+36=x^4+4x^2+9x^2+36\)

\(=x^2\left(x^2+4\right)+9\left(x^2+4\right)=\left(x^2+9\right)\left(x^2+4\right)\)

14 tháng 3 2019

       \(x^4+13x^2+36\)

<=> \(x^4+9x^2+4x^2+36\)

<=> \(x^2\left(x^2+9\right)+4\left(x^2+9\right)\)

<=> \(\left(x^2+9\right)\left(x^2+4\right)\)

21 tháng 9 2017

b) \(49y^2-x^2+6x-9\)

\(=49y^2-\left(x^2-6x+9\right)\)

\(=\left(7y\right)^2-\left(x-3\right)^2\)

\(=\left(7y-x+3\right)\left(7y+x-3\right)\)

a) \(a^2-9+6x-x^2\)

\(=a^2-\left(9-6x+x^2\right)\)

\(=a^2-\left(x-3\right)^2\)

\(=\left(a-x+3\right)\left(a+x-3\right)\)