Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/Dùng hằng đẳng thức A2-B2=(A+B)(A-B) phân tích được ngay
\(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-3y+1\right)\)
=\(\left(3x-2y+3\right)\left(4-x-4y\right)\)
b/Chắc chỉ phân tích hằng đẳng thức (A-B)2=A2-2ab+B2
\(49\left(y-4\right)^2-9y^2-3y-36=49y^2-392y+784-9y^2-3y-36\)
\(=40y^2-395y+748\)
Mình dùng biệt thức cho ra nghiệm vô tỉ, không biết cho phải tại mình tính sai hay đề thiếu nữa
c/Khai triển biểu thức ban đầu ta được
\(x\left(x-y\right)+y\left(y-x\right)=x^2-xy+y^2-xy=x^2-2xy+y^2=\left(x-y\right)^2\)
\(49.\left(y-4\right)^2-9y^2-36y-36\)
\(=7^2\left(y-4\right)^2-\left(9y^2+36y+36\right)\)
\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)
\(=\left(7y-28+3y+6\right).\left(7y-28-3y-6\right)\)
\(=\left(10y-22\right).\left(4y-34\right)\)
\(=4.\left(5y-11\right).\left(2y-17\right)\)
\(49\left(y-4\right)^2-9y^2-36y-36\)
\(=\) \(4\left(2y-17\right)\left(5y-11\right)\)
Dùng hằng đẳng thức là xong
a, \(\left(x+y\right)^3-x^3-y^3=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)
\(=3x^2y+3xy^2=3xy\left(x+y\right)\)
b, \(x^2+6xy+9y^2=\left(x+3y\right)^2\)
a) \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
b) \(49\left(y-4\right)^2-9y^2-36y-36\)
\(=49\left(y-4\right)^2-\left(3y+6\right)^2\)
\(=\left[7\left(y-4\right)-\left(3y+6\right)\right]\left[7\left(y-4\right)+\left(3y+6\right)\right]\)
\(=\left(4y-34\right)\left(10y-22\right)=4\left(2y-17\right)\left(5y-11\right)\)
a) \(g\left(x,y\right)=x^2-10xy+9y^2=x^2-xy-9xy+9y^2\)
\(=x\left(x-y\right)-9y\left(x-y\right)=\left(x-y\right)\left(x-9y\right)\).
b )\(f\left(x,y\right)=x^6+x^4+x^2y^2+y^4-y^6\)
\(=x^6-y^6+x^4+x^2y^2+y^4\)
\(=\left(x^3\right)^2-\left(y^3\right)^2+\left(x^4+2x^2y^2+y^4\right)-x^2y^2\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)+\left(x^2+y^2\right)^2-\left(xy\right)^2\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)\)
\(=\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\left[\left(x-y\right)\left(x+y\right)+1\right]\)
\(=\left(x^2+xy+y^2\right)\left(x^2-2y+y^2\right)\left(x^2-y^2+1\right)\)
Vậy \(f\left(x,y\right)=\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\left(x^2-y^2+1\right)\)
\(49\left(y-4\right)^2-9y^2-36y-36\)
\(=\left[7\left(y-4\right)\right]^2-\left[\left(3y\right)^2+2.3y.6+6^2\right]\)
\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)
\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)=\left(4y-34\right)\left(10y-22\right)=4\left(2y-17\right)\left(5y-11\right)\)
\(49\left(y-4\right)^2-9y^2-36y-36=49\left(y-4\right)^2-9\left(y^2+4y+4\right)\)\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+4\right)\right]^2=\left(7y-28-3y-12\right)\left(7y-28+3y+12\right)\)\(=\left(4y-40\right)\left(10y-16\right)=4\left(y-20\right)\left(5y-8\right)\)