Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3+6x^2+12x+8\)
\(=\left(x+2\right)^3\)
b) \(x^3-3x^2+3x-1\)
\(=\left(x-1\right)^3\)
c) \(1-9x+27x^2-27x^3\)
\(=-\left(27x^3-27x^2+9x-1\right)\)
\(=-\left(3x-1\right)^3\)
a, \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
b, \(1-9x+27x^2-27x^3=-\left(3x-1\right)^3\)
Mình có làm ở câu dưới rồi . Bạn tham khảo link :
https://olm.vn/hoi-dap/detail/231817932107.html
a ) 36x2 - ( 3x - 2 )2
= ( 6x - 3x + 2 ) ( 6x + 3x - 2 )
= ( 3x + 2 ) ( 9x - 2 )
b ) 16.( 4x + 5 )2 - 25. ( 2x + 2 )2
= [ 4.( 4x + 5 ) + 5. ( 2x + 2 ) ] [ 4 .( 4x + 5 ) - 5. ( 2x + 2 ) ]
= ( 16x + 5 + 10x + 10 ) ( 16x + 5 - 10x - 10 )
= ( 26x + 15 ) ( 6x - 5 )
a ) 36x2 - ( 3x - 2 )2
= ( 6x - 3x + 2 ) ( 6x + 3x - 2 )
= ( 3x + 2 ) ( 9x - 2 )
b ) 16.( 4x + 5 )2 - 25. ( 2x + 2 )2
= [ 4.( 4x + 5 ) + 5. ( 2x + 2 ) ] [ 4 .( 4x + 5 ) - 5. ( 2x + 2 ) ]
= ( 16x + 5 + 10x + 10 ) ( 16x + 5 - 10x - 10 )
= ( 26x + 15 ) ( 6x - 5 )
a) x3 - 1 + 5x2 - 5 + 3x - 3
= x3 + 5x2 + 3x - 9
= x3 + 6x2 - x2 + 9x - 6x - 9
= ( x3 + 6x2 + 9x ) - ( x2 + 6x + 9 )
= x( x2 + 6x + 9 ) - ( x2 + 6x + 9 )
= ( x2 + 6x + 9 )( x - 1 )
= ( x + 3 )2( x - 1 )
b) a5 + a4 + a3 + a2 + a + 1
= ( a5 + a4 + a3 ) + ( a2 + a + 1 )
= a3( a2 + a + 1 ) + 1( a2 + a + 1 )
= ( a2 + a + 1 )( a3 + 1 )
= ( a2 + a + 1 )( a + 1 )( a2 - a + 1 )
c) x3 - 3x2 + 3x - 1 - y3
= ( x3 - 3x2 + 3x - 1 ) - y3
= ( x - 1 )3 - y3
= ( x - 1 - y )[ ( x - 1 )2 + ( x - 1 )y + y2 ]
= ( x - 1 - y )( x2 - 2x + 1 + xy - y + y2 )
d) 5x3 - 3x2y - 45xy2 + 27y3
= ( 5x3 - 45xy2 ) - ( 3x2y - 27y3 )
= 5x( x2 - 9y2 ) - 3y( x2 - 9y2 )
= ( 5x - 3y )( x2 - 9y2 )
= ( 5x - 3y )[ x2 - ( 3y )2 ]
= ( 5x - 3y )( x - 3y )( x + 3y )
Bài 1 : Phân tích các đa thức sau thành nhân tử :
a) 8x3 - 64
=(2x)3 + 43
=(2x+4)(4x2 - 8x + 16)
c) 125x3 + 1
=5x3 + 13
=(5x+1)(25x2 +5x+1)
d) 8x3 - 27
=(2x)3 - 33
=(2x - 3)(2x2 + 6x + 9)
e) 1 + 8x6y3
=1 + (2x2y)3
=(1 + 2x2y)(4x4y2 -2x2y + 1)
f) 125x3 + 27y3
=(5x)3 + (3y3)
=(5x + 3y)(25x2 - 15xy + 9y2)
Bài 1
a) \(8x^3-64\)
\(=\left(2x\right)^3-4^3\)
\(=\left(2x-4\right)\left(4x^2+8x+16\right)\)
c) \(125x^3+1\)
\(=\left(5x\right)^3+1^3\)
\(=\left(5x+1\right)\left(25x^2-5x+1\right)\)
d) \(8x^3-27\)
\(=\left(2x\right)^3-3^3\)
\(=\left(2x-3\right)\left(4x^2+6x+9\right)\)
e) \(1+8x^6x^3\)
\(=1^3+\left(2x^2y\right)^3\)
\(=\left(1+2x^2y\right)\left(1-2x^2y+4x^4y^2\right)\)
f) \(125x^3+27y^3\)
\(=\left(5x\right)^3+\left(3y\right)^3\)
\(=\left(5x+3y\right)\left(25x^2-15xy+9x^2\right)\)
\(2x^2+3x-27=2x^2-6x+9x-27=2x\left(x-3\right)+9\left(x-3\right)=\left(2x+9\right)\left(x-3\right)\)
\(x^3-7x+6=x^3-x-6x+6=x\left(x^2-1\right)-6\left(x-1\right)=x\left(x-1\right)\left(x+1\right)-6\left(x-1\right)=\left(x-1\right)\left(x^2+x-6\right)\)
\(x^3+5x^2+8x+4=x^3+x^2+4x^2+8x+4=x^2\left(x+1\right)+4\left(x^2+2x+1\right)=x^2\left(x+1\right)+4\left(x+1\right)^2\)
\(=\left(x+1\right)\left(x^2+4x+4\right)=\left(x+1\right)\left(x+2\right)^2\)
\(27x^3-27x^2+18x-4=27x^3-9x^2-18x^2+6x+12x-4\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)=\left(3x-1\right)\left(9x^2-6x+4\right)\)
a) 1 - 2y + y2
= (1-y)2
b) ( x + 1 )2 - 25
=( x + 1 )2 - 52
=(x+1+5)(x+1-5)
\(a,27x^3-54x^2y+36xy^2-8y^3\)
\(=\left(3x\right)^3-3.\left(3x\right)^2.2y+3.3x.\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(3x-2y\right)^3\)
\(b,x^3-1+5x^2-5+3x-3\)
\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x^2-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left[x^2+x+1+5\left(x+1\right)+3\right]\)
\(=\left(x-1\right)\left(x^2+6x+9\right)\)
\(=\left(x-1\right)\left(x+3\right)^2\)
\(c,a^5+a^4+a^3+a^2+a+1\)
\(=a^4\left(a+1\right)+a^2\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(a^4+a^2+1\right)\)
\(27x^3-54x^2y+36xy^2-8y^3\)
\(=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(3x-2y\right)^3\)
______________________
\(x^3-1+5x^2-5+3x-3\)
\(=\left(x^3-1\right)+\left(5x^2-5\right)+\left(3x-3\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x^2-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1+5x+5+3\right)\)
\(=\left(x-1\right)\left(x^2+6x+9\right)\)
\(=\left(x-1\right)\left(x+3\right)^2\)
________________
\(a^5+a^4+a^3+a^2+a+1\)
\(=a^4\left(a+1\right)+a^2\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(a^4+a^2+1\right)\)
\(=\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)