Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^3-x^2-4\)
\(=x^3-2x^2+x^2-2x+2x-4\)
\(=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x+2\right)\)
a) \(x^3-x^2-4\)
\(=x^3-2x^2+x^2-2x+2x-4\)
\(=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x+2\right)\)
b) \(x^8-98x^4+1\)
\(=\left(x^4\right)^2+2\cdot x^4\cdot1+1^2-100x^4\)
\(=\left(x^4+1\right)^2-\left(10x^2\right)^2\)
\(=\left(x^4-10x^2+1\right)\left(x^4+10x^2+1\right)\)
a)\(3x^2-8x+4\)
\(=3x^2-2x-6x+4\)
\(=x\left(3x-2\right)-2\left(3x-2\right)\)
\(=\left(x-2\right)\left(3x-2\right)\)
b)\(4x^4+81\)
\(=4x^4+36x^2+81-36x^2\)
\(=\left(2x^2+9\right)^2-36x^2\)
\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)
c)\(x^8+98x^4+1\)
\(=\left(x^8+2x^4+1\right)+96x^4\)
\(=\left(x^4+1\right)^2+16x^2\left(x^4+1\right)+64x^4-16x^2\left(x^4+1\right)+32x^4\)
\(=\left(x^4+8x^2+1\right)^2-16x^2\left(x^4-2x^2+1\right)\)
\(=\left(x^4+8x^2+1\right)^2-16x^2\left(x^4-2x^2+1\right)\)
\(=\left(x^4+8x^2+1\right)^2-\left(4x^3-4x\right)^2\)
\(=\left(x^4+4x^3+8x^2-4x+1\right)\left(x^4-4x^3+8x^2+4x+1\right)\)
d)\(x^4+6x^3+7x^2-6x+1\)
\(=x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1\)
\(=x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\)
\(=\left(x^2+3x-1\right)\left(x^2+3x-1\right)\)\(=\left(x^2+3x-1\right)^2\)
a) \(45+x^3-5x^2-9x\)
\(\Leftrightarrow\left(45-9x\right)+\left(x^3-5x^2\right)\)
\(\Leftrightarrow-9\left(x-5\right)+x^2\left(x-5\right)\)
\(\Leftrightarrow\left(x-5\right)\left(x-3\right)\left(x+3\right)\)
TK NKA !!!
a) \(2x\left(x-3\right)^2+5x\left(3-x\right)\)
\(=2x\left(x-3\right)^2-5x\left(x-3\right)\)
\(=\left(x-3\right)\left[2x\left(x-3\right)-5x\right]\)
\(=\left(x-3\right)\left(2x^2-6x-5x\right)\)
\(=\left(x-3\right)\left(2x^2-11x\right)\)
\(=x\left(x-3\right)\left(2x-11\right)\)
b) \(\left(x+3\right)^2-4\left(y^2-2y+1\right)\)
\(=\left(x+3\right)^2-2^2\left(y-1\right)^2\)
\(=\left(x+3\right)^2-\left[2\left(y-1\right)\right]^2\)
\(=\left[\left(x+3\right)-2\left(y-1\right)\right]\left[\left(x+3\right)+2\left(y-1\right)\right]\)
\(=\left(x+3-2y+2\right)\left(x+3+2y-2\right)\)
\(=\left(x-2y+5\right)\left(x+2y+1\right)\)
a) \(2x.\left(x-3\right)^2+5x.\left(-x+3\right)=2x.\left(x-3\right)^2-5x.\left(x-3\right)\)
\(=\left(x-3\right).\left(2x^2-11x\right)=\left(x-3\right).x.\left(2x-11\right)\)
b) \(\left(x+3\right)^2-4.\left(y^2-2y+1\right)=\left(x+3\right)^2-2^2.\left(y-1\right)^2\)
\(=\left(x+3\right)^2-\left[2.\left(y-1\right)\right]^2=\left(x-2y+1\right).\left(x+2y+5\right)\)
a) \(x^3+3x^2y-9xy^2+5y^3\)
\(=x^3-3x^2y+3xy^2-y^3+6x^2y-12xy^2+6y^3\)
\(=\left(x-y\right)^3+6y\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3+6y\left(x-y\right)^2\)
\(=\left(x-y\right)^2\left(x+5y\right)\)
b) \(27x^3-27x^2+18x-4\)
\(=27x^3-9x^2-18x^2+6x+12x-4\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
c) \(2x^3-x^2+5x+3\)
\(=2x^3+x^2-2x^2-x+6x+3\)
\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
\(x^3+x^2+4=x^3+2x^2-x^2-2x+2x+4\)
\(=x^2\left(x+2\right)-x\left(x+2\right)+2\left(x+2\right)\)
\(=\left(x^2-x+2\right)\left(x+2\right)\)
\(x^8+64=x^8+16x^4+64-16x^4\)
\(=\left(x^4+8\right)^2-\left(4x^2\right)^2\)
\(=\left(x^4-4x^2+8\right)\left(x^4+4x^2+8\right)\)
\(4a^4+b^4=4a^4+4a^2b^2+b^4-4a^2b^2\)
\(=\left(2a^2+b^2\right)^2-\left(2ab\right)^2\)
\(=\left(2a^2+b^2-2ab\right)\left(2a^2+b^2+2ab\right)\)
\(x^3-2x-4=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x^2+2x+2\right)\left(x-2\right)\)
Chúc bạn học tốt.
Lời giải:
a)
$x^8+98x^4+1=(x^4+1)^2+96x^4=(x^4+1)^2+(8x^2)^2+16x^2(x^4+1)+32x^4-16x^2(x^4+1)$
$=(x^4+1+8x^2)^2-16x^2(x^4+1-2x^2)$
$=(x^4+1+8x^2)^2-16x^2(x^2-1)^2$
$=(x^4+1+8x^2)^2-[4x(x^2-1)]^2=(x^4+1+8x^2-4x^3+4x)(x^4+4x^3+8x^2-4x+1)$
b)
$(x^2+2x)(x^2+2x+4)+3$
$=(x^2+2x)^2+4(x^2+2x)+3$
$=(x^2+2x)^2+(x^2+2x)+3(x^2+2x)+3$
$=(x^2+2x)(x^2+2x+1)+3(x^2+2x+1)$
$=(x^2+2x+3)(x^2+2x+1)=(x^2+2x+3)(x+1)^2$
Lời giải:
a)
$x^8+98x^4+1=(x^4+1)^2+96x^4=(x^4+1)^2+(8x^2)^2+16x^2(x^4+1)+32x^4-16x^2(x^4+1)$
$=(x^4+1+8x^2)^2-16x^2(x^4+1-2x^2)$
$=(x^4+1+8x^2)^2-16x^2(x^2-1)^2$
$=(x^4+1+8x^2)^2-[4x(x^2-1)]^2=(x^4+1+8x^2-4x^3+4x)(x^4+4x^3+8x^2-4x+1)$
b)
$(x^2+2x)(x^2+2x+4)+3$
$=(x^2+2x)^2+4(x^2+2x)+3$
$=(x^2+2x)^2+(x^2+2x)+3(x^2+2x)+3$
$=(x^2+2x)(x^2+2x+1)+3(x^2+2x+1)$
$=(x^2+2x+3)(x^2+2x+1)=(x^2+2x+3)(x+1)^2$