Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+x^3+2x^2+x+1\)
\(=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)
\(=\left(x^2+1\right)^2+x\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+1+x\right)\)
x^4+x^3+2x^2+x+1
=(x^4+2x^2+1)+(x^3+x)
=(x^2+1)^2+x(x^2+1)
=(x^2+1)(x^2+x+1)
\(4\left(x+3y-4\right)^2-x^2+6x-9\)
\(=\left[2\left(x+3y-4\right)\right]^2-\left(x^2-6x+9\right)\)
\(=\left[2x+6y-8\right]^2-\left(x-3\right)^2\)
\(=\left(2x+6y-8+x-3\right)\left(2x+6y-8-x+3\right)\)
\(=\left(3x+6y-11\right)\left(x+6y-5\right)\)
\(x^4+x^2y^2+y^4\)
\(=x^4+2x^2y^2+y^4-x^2y^2\)
\(=\left(x^2+y^2\right)^2-\left(xy\right)^2\)
\(=\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)\)
a) x2 - 2xy - 4 + y2
= (x - y)2 - 22
= (x - y - 2)(x - y + 2)
b) x2 + y2 - 1 - 2xy
= (x - y)2 - 12
= (x - y - 1)(x - y + 1)
c) 25 - x2 + 4xy - 4y2
= 52 - (x - 2y)2
= (5 - x + 2y)(5 + x - 2y)
\(A=\left(x+1\right)\left(x-4\right)\left(x+2\right)\left(x-8\right)+4x^2\)
\(A=\left[\left(x+1\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x+2\right)\right]+4x^2\)
\(A=\left(x^2-7x-8\right)\left(x^2-2x-8\right)+4x^2\)
Đặt \(p=x^2-4,5x-8\)ta có :
\(A=\left(p-2,5x\right)\left(p+2,5x\right)+4x^2\)
\(A=p^2-\left(2,5x\right)^2+4x^2\)
\(A=p^2-6,25x^2+4x^2\)
\(A=p^2-2,25x^2\)
\(A=p^2-\left(1,5x\right)^2\)
\(A=\left(p-1,5x\right)\left(p+1,5x\right)\)
Thay \(p=x^2-4,5x-8\)vào A ta có :
\(A=\left(x^2-4,5x-8-1,5x\right)\left(x^2-4,5x-8+1,5x\right)\)
\(A=\left(x^2-6x-8\right)\left(x^2-3x-8\right)\)
\(\left(x+1\right)\left(x-4\right)\left(x+2\right)\left(x-8\right)+4x^2\)
\(=\left(x+1\right)\left(x-8\right)\left(x-4\right)\left(x+2\right)+4x^2\)
\(=\left(x^2-7x-8\right)\left(x^2-2x-8\right)+4x^2\)
Đặt \(x^2-2x-8=t\)
Ta có : \(\left(t-5x\right)t+4x^2\)
\(=t^2-5xt+4x^2\)
\(=t^2-2.\frac{5}{2}xt+\frac{25}{4}x^2-\frac{9}{4}x^2\)
\(=\left(t-\frac{5}{2}\right)^2-\frac{9}{4}x^2\)
\(=\left(t-\frac{5}{2}-\frac{3}{2}x\right)\left(t-\frac{5}{2}+\frac{3}{2}x\right)\)
Học tốt ~~
a) \(x^2+5x+6=x^2+2x+3x+6=x\left(x+2\right)+3\left(x+2\right)=\left(x+3\right)\left(x+2\right)\)
b) \(x^2-4x+3=x^2-x-3x+3=x\left(x-1\right)-3\left(x-1\right)=\left(x-3\right)\left(x-1\right)\)
c) \(x^2+5x+4=x^2+x+4x+4=x\left(x+1\right)+4\left(x+1\right)=\left(x+4\right)\left(x+1\right)\)
d) \(x^2-x-6=x^2+2x-3x-6=x\left(x+2\right)-3\left(x+2\right)=\left(x-3\right)\left(x+2\right)\)
\(x^4+x^2+1\)
\(=x^4-x+\left(x^2+x+1\right)\)
\(=x.\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x.\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x.\left(x-1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left[x.\left(x-1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
Tham khảo nhé~
Hướng dẫn thôi :
a) x ( x + 2 ) ( x^2 - 6x + 4 )
b) ( x + 1 ) ( x + 2 ) ( x - 2 )
\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\\ =\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\\ =\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\\ =\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)
\(= (x+4)^2(x^2-1)-(x^2-1)=[(x+4)^2-1](x^2-1)\)
\(=(x+4-1)(x+4+1)(x-1)(x+1)\)
\(=(x+3)(x+5)(x-1)(x+1)\)